Grey matter heterotopia subtypes show specific morpho-electric signatures and network dynamics

Author:

Vermoyal Jean-Christophe1,Hardy Delphine1,Goirand-Lopez Lucas1,Vinck Antonin1,Silvagnoli Lucas1,Fortoul Aurélien1,Francis Fiona2ORCID,Cappello Silvia3ORCID,Bureau Ingrid1,Represa Alfonso1ORCID,Cardoso Carlos1ORCID,Watrin Françoise1,Marissal Thomas1,Manent Jean-Bernard1ORCID

Affiliation:

1. INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems , Marseille 13009 , France

2. INSERM, Sorbonne University, Institut du Fer à Moulin , Paris 75005 , France

3. Department of Physiological Genomics, Biomedical Center , LMU Munich, Planegg-Martinsried 82152 , Germany

Abstract

Abstract Grey matter heterotopia (GMH) are neurodevelopmental disorders associated with abnormal cortical function and epilepsy. Subcortical band heterotopia (SBH) and periventricular nodular heterotopia (PVNH) are two well-recognized GMH subtypes in which neurons are misplaced, either forming nodules lining the ventricles in PVNH, or forming bands in the white matter in SBH. Although both PVNH and SBH are commonly associated with epilepsy, it is unclear whether these two GMH subtypes differ in terms of pathological consequences or, on the contrary, share common altered mechanisms. Here, we studied two robust preclinical models of SBH and PVNH, and performed a systematic comparative assessment of the physiological and morphological diversity of heterotopia neurons, as well as the dynamics of epileptiform activity and input connectivity. We uncovered a complex set of altered properties, including both common and distinct physiological and morphological features across heterotopia subtypes, and associated with specific dynamics of epileptiform activity. Taken together, these results suggest that pro-epileptic circuits in GMH are, at least in part, composed of neurons with distinct, subtype-specific, physiological and morphological properties depending on the heterotopia subtype. Our work supports the notion that GMH represent a complex set of disorders, associating both shared and diverging pathological consequences, and contributing to forming epileptogenic networks with specific properties. A deeper understanding of these properties may help to refine current GMH classification schemes by identifying morpho-electric signatures of GMH subtypes, to potentially inform new treatment strategies.

Funder

ERA-NET

NEURON

French National Agency for Research

French government

d'Excellence d'Aix-Marseille Université

ANR

French Biomedical Research Foundation

French Ministry for Higher Education and Research and NeuroMarseille/NeuroSchool

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3