Ultrasound delivery of a TrkA agonist confers neuroprotection to Alzheimer-associated pathologies

Author:

Xhima Kristiana12ORCID,Markham-Coultes Kelly1,Kofoed Rikke Hahn1,Saragovi H. Uri345,Hynynen Kullervo67,Aubert Isabelle12

Affiliation:

1. Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada

2. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada

3. Lady Davis Institute, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada

4. Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada

5. Department of Ophthalmology and Vision Sciences, McGill University, Montreal, QC, H4A 3S5, Canada

6. Physical Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada

7. Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada

Abstract

Abstract Early degeneration of basal forebrain cholinergic neurons (BFCNs) contributes substantially to cognitive decline in Alzheimer's disease (AD). Evidence from preclinical models of neuronal injury and aging support a pivotal role for nerve growth factor (NGF) in neuroprotection, resilience, and cognitive function. However, whether NGF can provide therapeutic benefit in the presence of AD-related pathologies remains unresolved. Perturbations in the NGF signaling system in AD may render neurons unable to benefit from NGF administration. Additionally, challenges related to brain delivery remain for clinical translation of NGF-based therapies in AD. To be safe and efficient, NGF-related agents should stimulate the NGF receptor, tropomyosin receptor kinase A (TrkA), avoid activation through the p75 neurotrophin receptor (p75NTR), and be delivered non-invasively to targeted brain areas using real-time monitoring. We addressed these limitations using MRI-guided focused ultrasound (MRIgFUS) to increase blood-brain barrier (BBB) permeability locally and transiently, allowing an intravenously administered TrkA agonist that does not activate p75NTR, termed D3, to enter targeted brain areas. Here, we report the therapeutic potential of selective TrkA activation in a transgenic mouse model that recapitulates numerous AD-associated pathologies. Repeated MRIgFUS-mediated delivery of D3 (D3/FUS) improved cognitive function in the TgCRND8 model of AD. Mechanistically, D3/FUS treatment effectively attenuated cholinergic degeneration and promoted functional recovery. D3/FUS treatment also resulted in widespread reduction of brain amyloid pathology and dystrophic neurites surrounding amyloid plaques. Furthermore, D3/FUS markedly enhanced hippocampal neurogenesis in TgCRND8 mice, implicating TrkA agonism as a novel therapeutic target to promote neurogenesis in the context of AD-related pathology. Thus, this study provides evidence that selective TrkA agonism confers neuroprotection to effectively counteract AD-related vulnerability. Recent clinical trials demonstrate that non-invasive BBB modulation using MRIgFUS is safe, feasible and reversible in AD patients. TrkA receptor agonists coupled with MRIgFUS delivery constitute a promising disease-modifying strategy to foster brain health and counteract cognitive decline in AD.

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3