A direct spinal cord–computer interface enables the control of the paralysed hand in spinal cord injury

Author:

Oliveira Daniela Souza1ORCID,Ponfick Matthias2,Braun Dominik I1,Osswald Marius1,Sierotowicz Marek13,Chatterjee Satyaki1,Weber Douglas45,Eskofier Bjoern16,Castellini Claudio13,Farina Dario7ORCID,Kinfe Thomas Mehari18,Del Vecchio Alessandro1

Affiliation:

1. Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg , 91052 Erlangen , Germany

2. Querschnittzentrum Rummelsberg, Krankenhaus Rummelsberg GmbH , 90592 Schwarzenbruck , Germany

3. Institute of Robotics and Mechatronics, German Aerospace Center (DLR) , 82234 Oberpfaffenhofen , Germany

4. Department of Mechanical Engineering, Carnegie Mellon University , Pittsburgh, PA 15213 , USA

5. Neuroscience Institute, Carnegie Mellon University , Pittsburgh, PA 15213 , USA

6. Translational Digital Health Group, Institute of AI for Health, Helmholtz Zentrum München—German Research Center for Environmental Health , 85764 Neuherberg , Germany

7. Department of Bioengineering, Imperial College London , London, SW7 2AZ , UK

8. Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander-Universität Erlangen-Nürnberg , 91054 Erlangen , Germany

Abstract

Abstract Paralysis of the muscles controlling the hand dramatically limits the quality of life for individuals living with spinal cord injury (SCI). Here, with a non-invasive neural interface, we demonstrate that eight motor complete SCI individuals (C5–C6) are still able to task-modulate in real-time the activity of populations of spinal motor neurons with residual neural pathways. In all SCI participants tested, we identified groups of motor units under voluntary control that encoded various hand movements. The motor unit discharges were mapped into more than 10 degrees of freedom, ranging from grasping to individual hand-digit flexion and extension. We then mapped the neural dynamics into a real-time controlled virtual hand. The SCI participants were able to match the cue hand posture by proportionally controlling four degrees of freedom (opening and closing the hand and index flexion/extension). These results demonstrate that wearable muscle sensors provide access to spared motor neurons that are fully under voluntary control in complete cervical SCI individuals. This non-invasive neural interface allows the investigation of motor neuron changes after the injury and has the potential to promote movement restoration when integrated with assistive devices.

Funder

European Research Council

German Ministry for Education and Research

Bavarian State Ministry of Economic Affairs and Media, Energy and Technology

Siemens Healthineers

University Hospital Erlangen

Universitätsklinikum Erlangen

Friedrich-Alexander University

Friedrich-Alexander-Universität Erlangen-Nürnberg

Synergy Grant Natural BionicS

EPSRC Transformative Healthcare

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3