Phosphorylated tau interactome in the human Alzheimer’s disease brain

Author:

Drummond Eleanor12ORCID,Pires Geoffrey23ORCID,MacMurray Claire2,Askenazi Manor4ORCID,Nayak Shruti5,Bourdon Marie2,Safar Jiri67,Ueberheide Beatrix48ORCID,Wisniewski Thomas29ORCID

Affiliation:

1. Brain and Mind Centre and Central Clinical School, Faculty of Medicine and Health, University of Sydney, Australia

2. Centre for Cognitive Neurology, Department of Neurology, New York University School of Medicine, New York, NY, USA

3. Alzheimer’s and Prion Diseases Team, Paris Brain Institute, CNRS, UMR 7225, INSERM 1127, Sorbonne University UM75, Paris, France

4. Biomedical Hosting LLC, USA

5. Proteomics Laboratory, Division of Advanced Research Technologies, NYU School of Medicine, New York, NY, USA

6. Department of Pathology, Case Western Reserve University, Cleveland, OH, USA

7. Department of Neurology, Case Western Reserve University, Cleveland, OH, USA

8. Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA

9. Department of Psychiatry, New York University School of Medicine, New York, NY, USA

Abstract

AbstractAccumulation of phosphorylated tau is a key pathological feature of Alzheimer’s disease. Phosphorylated tau accumulation causes synaptic impairment, neuronal dysfunction and formation of neurofibrillary tangles. The pathological actions of phosphorylated tau are mediated by surrounding neuronal proteins; however, a comprehensive understanding of the proteins that phosphorylated tau interacts with in Alzheimer’s disease is surprisingly limited. Therefore, the aim of this study was to determine the phosphorylated tau interactome. To this end, we used two complementary proteomics approaches: (i) quantitative proteomics was performed on neurofibrillary tangles microdissected from patients with advanced Alzheimer’s disease; and (ii) affinity purification-mass spectrometry was used to identify which of these proteins specifically bound to phosphorylated tau. We identified 542 proteins in neurofibrillary tangles. This included the abundant detection of many proteins known to be present in neurofibrillary tangles such as tau, ubiquitin, neurofilament proteins and apolipoprotein E. Affinity purification-mass spectrometry confirmed that 75 proteins present in neurofibrillary tangles interacted with PHF1-immunoreactive phosphorylated tau. Twenty-nine of these proteins have been previously associated with phosphorylated tau, therefore validating our proteomic approach. More importantly, 34 proteins had previously been associated with total tau, but not yet linked directly to phosphorylated tau (e.g. synaptic protein VAMP2, vacuolar-ATPase subunit ATP6V0D1); therefore, we provide new evidence that they directly interact with phosphorylated tau in Alzheimer’s disease. In addition, we also identified 12 novel proteins, not previously known to be physiologically or pathologically associated with tau (e.g. RNA binding protein HNRNPA1). Network analysis showed that the phosphorylated tau interactome was enriched in proteins involved in the protein ubiquitination pathway and phagosome maturation. Importantly, we were able to pinpoint specific proteins that phosphorylated tau interacts with in these pathways for the first time, therefore providing novel potential pathogenic mechanisms that can be explored in future studies. Combined, our results reveal new potential drug targets for the treatment of tauopathies and provide insight into how phosphorylated tau mediates its toxicity in Alzheimer’s disease.

Funder

Bluesand Foundation and Dementia Australia

Philippe Chatrier Foundation

National Institutes of Health

NYU School of Medicine

NIH

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3