Double administration of self-complementary AAV9NDUFS4 prevents Leigh disease in Ndufs4−/− mice

Author:

Corrà Samantha1,Cerutti Raffaele12,Balmaceda Valeria1,Viscomi Carlo34ORCID,Zeviani Massimo124

Affiliation:

1. Venetian Institute of Molecular Medicine , 35128 Padova , Italy

2. Department of Neurosciences, University of Padova , 35128 Padova , Italy

3. Department of Biomedical Sciences, University of Padova , 35131 Padova , Italy

4. Study Centre for Neurodegeneration, Univcersity of Padova (CESNE) , 35131, Padova , Italy

Abstract

Abstract Leigh disease, or subacute necrotizing encephalomyelopathy, a genetically heterogeneous condition consistently characterized by defective mitochondrial bioenergetics, is the most common oxidative-phosphorylation related disease in infancy. Both neurological signs and pathological lesions of Leigh disease are mimicked by the ablation of the mouse mitochondrial respiratory chain subunit Ndufs4−/−, which is part of, and crucial for, normal Complex I activity and assembly, particularly in the brains of both children and mice. We previously conveyed the human NDUFS4 gene to the mouse brain using either single-stranded adeno-associated viral 9 recombinant vectors or the PHP.B adeno-associated viral vector. Both these approaches significantly prolonged the lifespan of the Ndufs4−/− mouse model but the extension of the survival was limited to a few weeks by the former approach, whereas the latter was applicable to a limited number of mouse strains, but not to primates. Here, we exploited the recent development of new, self-complementary adeno-associated viral 9 vectors, in which the transcription rate of the recombinant gene is markedly increased compared with the single-stranded adeno-associated viral 9 and can be applied to all mammals, including humans. Either single intra-vascular or double intra-vascular and intra-cerebro-ventricular injections were performed at post-natal Day 1. The first strategy ubiquitously conveyed the human NDUFS4 gene product in Ndufs4−/− mice, doubling the lifespan from 45 to ≈100 days after birth, when the mice developed rapidly progressive neurological failure. However, the double, contemporary intra-vascular and intra-cerebroventricular administration of self-complementary-adeno-associated viral NDUFS4 prolonged healthy lifespan up to 9 months of age. These mice were well and active at euthanization, at 6, 7, 8 and 9 months of age, to investigate the brain and other organs post-mortem. Robust expression of hNDUFS4 was detected in different cerebral areas preserving normal morphology and restoring Complex I activity and assembly. Our results warrant further investigation on the translatability of self-complementary-adeno-associated viral 9 NDUFS4-based therapy in the prodromal phase of the disease in mice and eventually humans.

Funder

Telethon Foundation

Fondation NRJ pour les Neurosciences - Institute de France Grant

Associazione Luigi Comini Onlus

AFM – Telethon

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

Reference22 articles.

1. Mitochondrial diseases;Gorman;Nat Rev Dis Primers,2016

2. Mitochondrial genetic medicine;Wallace;Nat Genet,2018

3. On the dynamic and even reversible nature of Leigh syndrome: Lessons from human imaging and mouse models;Walker;Curr Opin Neurobiol,2021

4. Strategies for fighting mitochondrial diseases;Viscomi;J Intern Med,2020

5. Mitochondrial retinopathies;Zeviani;Int J Mol Sci,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3