Repurposing ibudilast to mitigate Alzheimer’s disease by targeting inflammation

Author:

Oliveros Giovanni1,Wallace Charles H1,Chaudry Osama2,Liu Qiao3,Qiu Yue4ORCID,Xie Lei3456,Rockwell Patricia12,Figueiredo-Pereira Maria E12,Serrano Peter A17ORCID

Affiliation:

1. Program in Biochemistry, The Graduate Center, CUNY , 365 5th Ave, New York, NY 10016 , USA

2. Department of Biological Sciences, Hunter College , 695 Park Ave, New York, NY 10065 , USA

3. Department of Computer Science, Hunter College , 695 Park Ave, New York, NY 10065 , USA

4. Program in Biology, The Graduate Center, CUNY , 365 5th Ave, New York, NY 10016 , USA

5. Program in Computer Science and Biochemistry, The Graduate Center , 365 5th Ave, New York NY 10016 , USA

6. Helen and Robert Appel Alzheimer’s disease Research Institute, Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, Cornell University , 411 E 69th St, New York, NY 10021 , USA

7. Department of Psychology, Hunter College , 695 Park Ave, New York, NY 10065 , USA

Abstract

Abstract Alzheimer’s disease is a multifactorial disease that exhibits cognitive deficits, neuronal loss, amyloid plaques, neurofibrillary tangles and neuroinflammation in the brain. Hence, a multi-target drug would improve treatment efficacy. We applied a new multi-scale predictive modelling framework that integrates machine learning with biophysics and systems pharmacology to screen drugs for Alzheimer’s disease using patients’ tissue samples. Our predictive modelling framework identified ibudilast as a drug with repurposing potential to treat Alzheimer’s disease. Ibudilast is a multi-target drug, as it is a phosphodiesterase inhibitor and toll-like receptor 4 (TLR4) antagonist. In addition, we predict that ibudilast inhibits off-target kinases (e.g. IRAK1 and GSG2). In Japan and other Asian countries, ibudilast is approved for treating asthma and stroke due to its anti-inflammatory potential. Based on these previous studies and on our predictions, we tested for the first time the efficacy of ibudilast in Fisher transgenic 344-AD rats. This transgenic rat model is unique as it exhibits hippocampal-dependent spatial learning and memory deficits and Alzheimer’s disease pathology, including hippocampal amyloid plaques, tau paired-helical filaments, neuronal loss and microgliosis, in a progressive age-dependent manner that mimics the pathology observed in Alzheimer’s disease patients. Following long-term treatment with ibudilast, transgenic rats were evaluated at 11 months of age for spatial memory performance and Alzheimer’s disease pathology. We demonstrate that ibudilast-treatment of transgenic rats mitigated hippocampal-dependent spatial memory deficits, as well as hippocampal (hilar subregion) amyloid plaque and tau paired-helical filament load, and microgliosis compared to untreated transgenic rat. Neuronal density analysed across all hippocampal regions was similar in ibudilast-treated transgenic compared to untreated transgenic rats. Interestingly, RNA sequencing analysis of hippocampal tissue showed that ibudilast-treatment affects gene expression levels of the TLR and ubiquitin-proteasome pathways differentially in male and female transgenic rats. Based on the TLR4 signalling pathway, our RNA sequencing data suggest that ibudilast-treatment inhibits IRAK1 activity by increasing expression of its negative regulator IRAK3, and/or by altering TRAF6 and other TLR-related ubiquitin ligase and conjugase levels. Our results support that ibudilast can serve as a repurposed drug that targets multiple pathways including TLR signalling and the ubiquitin/proteasome pathway to reduce cognitive deficits and pathology relevant to Alzheimer’s disease.

Funder

NIGMS

NIA

City University of New York

NIH

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3