The transcription factor OsSPL9 endows rice with copper deficiency resilience

Author:

Wang Wujian1,Luo Le2,Shi Huichao1,Song Yuxinrui1,Wang Junjie1,Chen Chen1,Shen Zhenguo1ORCID,Rouached Hatem3,Zheng Luqing1ORCID

Affiliation:

1. College of Life Sciences, Nanjing Agricultural University , Nanjing 210095 , China

2. College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095 , China

3. Department of Plant, Soil, and Microbial Sciences, Plant Resilience Institute, Michigan State University , East Lansing, MI 48824 , USA

Abstract

Abstract Copper (Cu) is a crucial micronutrient essential for the growth and development of plants. Rice exhibits remarkable resistance to Cu deficiency, but the underlying molecular mechanisms are not well understood. In this study, we reveal that the plant’s ability to withstand Cu deficiency is orchestrated by a transcription factor known as OsSPL9. We have demonstrated that OsSPL9 functions as a central regulator of Cu homeostasis. Disrupting OsSPL9 through knockout significantly reduced the plant’s tolerance to Cu deficiency. As a result, the spl9 mutants exhibited reduced Cu accumulation in their shoots when compared with wild-type plants. This reduction was linked to a disruption in the transport of Cu from older leaves to younger ones. Furthermore, we show that OsSPL9 directly bound to GTAC motifs in the promoters of key genes involved in Cu uptake and transport, as well as Cu-miRNAs, and enhanced their transcription under Cu-deficient conditions. Overall, our findings shed light on the molecular basis of rice resilience to Cu deficiency stress and place the transcription factor OsSPL9 as a master regulator of this response.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3