Changes in carbohydrate distribution in cotton photosynthetic organs and increase in boll weight reduce yield loss under high temperature

Author:

Yang Liuyan1,Duan Jiahao1,Liu Yu1,Hu Wei1,Liu Xingke1,Wang Youhua1,Zhou Zhiguo1ORCID,Zhao Wenqing1

Affiliation:

1. College of Agriculture, Nanjing Agricultural University , Nanjing , China

Abstract

Abstract Yield of cotton (Gossypium hirsutum) does not always fall with high temperature (HT) even though this induces significant reductions in fruit retention. To investigate the underlying mechanisms, a greenhouse experiment was conducted with two temperature regimes [control treatment, 28 °C; high temperature (HT), 34 °C] for 7 d. Results showed HT did not significantly influence cotton yield, but reduced boll number and increased boll weight. The 13C distribution ratio of the leaf subtending the cotton boll (LSCB) decreased while that of the cotton boll increased under HT. Transcriptomic and proteomic analyses of the LSCB revealed up-regulated genes involved in cytokinin and jasmonic acid synthesis, as well as SWEET15 (GH_D01G0218), which positively regulated photosynthesis and transport photosynthate, ultimately leading to increased boll weight. After 7 d recovery from HT, the 13C distribution ratio of the LSCB increased while that of the cotton boll decreased. However, boll weight still increased, which was related to increased amylase and sucrose phosphate synthase activities and up-regulated sucrose transport genes in the main-stem leaf and capsule wall. Thus, both accelerated sucrose synthesis and transport in the LSCB under HT and increased sucrose supply ability of the main-stem leaf and capsule wall after recovery from HT contributed to an increased boll weight, which finally maintained cotton yield.

Funder

China Agriculture Research System of MOF and MARA

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3