The ZmNF-YC1–ZmAPRG pathway modulates low phosphorus tolerance in maize

Author:

Bai Yang12,Yang Qiuyue12,Gan Yuling12,Li Mei3,Zhao Zikun12,Dong Erfei12,Li Chaofeng12ORCID,He Di12,Mei Xiupeng12,Cai Yilin12ORCID

Affiliation:

1. Maize Research Institute, Southwest University , Chongqing 400715 , China

2. Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University , Chongqing 400715 , China

3. Department of Agriculture and Horticulture, Guangxi Agricultural Vocational University , Nanning 530007, Guangxi , China

Abstract

Abstract Phosphorus (P) is an essential nutrient for plant growth and yield. Low phosphate use efficiency makes it important to clarify the molecular mechanism of low P stress. In our previous studies, a P efficiency gene ZmAPRG was identified. Here, we further screened the upstream regulator ZmNF-YC1 of ZmAPRG by yeast one hybrid (Y1H) assay, and found it was a low inorganic phosphorus (Pi)-inducible gene. The results of dual luciferase assays, expression analysis, and ChIP-qPCR assays showed that ZmNF-YC1 is a positive regulator of ZmAPRG. Overexpression of ZmNF-YC1 improved low P tolerance, whereas knockout of ZmNF-YC1 decreased low P tolerance in maize. Bimolecular fluorescence complementation (BiFC), yeast two hybrid (Y2H) assay, and yeast three hybrid (Y3H) assay further showed that ZmNF-YC1 can interact with ZmNF-YB14, and recruit ZmNF-YA4/10 to form NF-Y complexes. Transcriptional activation assay confirmed that the NF-Y complexes can activate the promoters of ZmAPRG. Meanwhile, transcriptome and metabolome analyses indicated that overexpression of ZmAPRG improves low P tolerance by regulating lipid composition and photosynthetic capacity, and chlorophyll fluorescence parameters provided evidence in support of this hypothesis. Furthermore, overexpression of ZmAPRG increased grain yield in inbred and hybrid maize under low P conditions. Taken together, our research revealed a low P tolerance mechanism of the ZmNF-YC1–ZmAPRG pathway.

Funder

National Natural Science Foundation of China

Chongqing Natural Science Foundation

Chongqing Technology Innovation and Application Development Project

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ZmNF-YA1 Contributes to Maize Thermotolerance by Regulating Heat Shock Response;International Journal of Molecular Sciences;2024-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3