The synergistic effect of multiple organic macromolecules on the formation of calcium oxalate raphides of Musa spp.

Author:

Zhang Wenjun1,Fan Yuke1,Chi Jialin2

Affiliation:

1. College of Resources and Environment, Huazhong Agricultural University , Wuhan 430070 , China

2. National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences , Guangzhou 510650 , China

Abstract

Abstract Needle-like calcium oxalate crystals called raphides are unique structures in the plant kingdom. Multiple biomacromolecules work together in the regulatory and transportation pathways to form raphides; however, the mechanism by which this occurs remains unknown. Using banana (Musa spp.), this study combined in vivo methods including confocal microscopy, transmission electron microscopy, and Q Exactive mass spectrometry to identify the main biomolecules, such as vesicles, together with the compositions of lipids and proteins in the crystal chamber, which is the membrane compartment that surrounds each raphide during its formation. Simulations of the vesicle transportation process and the synthesis of elongated calcium oxalate crystals in vitro were then conducted, and the results suggested that the vesicles carrying amorphous calcium oxalate and proteins embedded in raphides are transported along actin filaments. These vesicles subsequently fuse with the crystal chamber, utilizing the proteins embedded in the raphides as a template for the final formation of the structure. Our findings contribute to the fundamental understanding of the regulation of the diverse biomacromolecules that are crucial for raphide formation. Moreover, the implications of these findings extend to other fields such as materials science, and particularly the synthesis of functionalized materials.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

GDAS’ Project of Science and Technology Development

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3