Differences in stomatal sensitivity to CO2 and light influence variation in water use efficiency and leaf carbon isotope composition in two genotypes of the C4 plant Zea mays

Author:

Crawford Joseph D1ORCID,Twohey Robert J2,Pathare Varsha S1ORCID,Studer Anthony J2ORCID,Cousins Asaph B1ORCID

Affiliation:

1. School of Biological Sciences, Washington State University , Pullman, WA 99164 , USA

2. Department of Crop Sciences, University of Illinois Urbana-Champaign , Urbana, IL 61801 , USA

Abstract

Abstract The ratio of net CO2 uptake (Anet) and stomatal conductance (gs) is an intrinsic measurement of leaf water use efficiency (WUEi); however, its measurement can be challenging for large phenotypic screens. Measurements of the leaf carbon isotope composition (δ13Cleaf) may be a scalable tool to approximate WUEi for screening because it in part reflects the competing influences of Anet and gs on the CO2 partial pressure (pCO2) inside the leaf over time. However, in C4 photosynthesis, the CO2-concentrating mechanism complicates the relationship between δ13Cleaf and WUEi. Despite this complicated relationship, several studies have shown genetic variation in δ13Cleaf across C4 plants. Yet there has not been a clear demonstration of if Anet or gs are the causal mechanisms controlling WUEi and δ13Cleaf. Our approach was to characterize leaf photosynthetic traits of two Zea mays recombinant inbred lines (Z007E0067 and Z007E0150) which consistently differ for δ13Cleaf even though they have minimal confounding genetic differences. We demonstrate that these two genotypes contrasted in WUEi driven by differences in the speed of stomatal responses to changes in pCO2 and light that lead to unproductive leaf water loss. These findings provide support that differences in δ13Cleaf in closely related genotypes do reflect greater WUEi and further suggest that differences in stomatal kinetic response to changing environmental conditions is a key target to improve WUEi.

Funder

United States Department of Agriculture—Hatch, a United States Department of Agriculture—Agriculture and Food Research Initiative

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3