Alternate bearing in 'Hass' avocado – Fruit load-induced changes in bud auxin homeostasis are associated with flowering repression

Author:

Pochamreddy Madhuri12,Haim Dor12,Halon Eyal1,Keinan Eti1,Rai Avinash Chandra1,Kamara Itzhak1,Sadka Avi1ORCID,Irihimovitch Vered1

Affiliation:

1. Institute of Plant Sciences, Agricultural Research Organization, Volcani Center , Rishon LeZion 7505101, Israel

2. The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture , The Hebrew University of Jerusalem, Rehovot 76100, Israel

Abstract

Abstract In 'Hass' avocado (Persea americana), fruit presence reduces next season flowering. Recent fruit tree studies proposed that heavy fruit load (HFL) generates an auxin (IAA) signal in the buds, which represses flowering. However, the nature of this signal remains unknown. Here, we investigated the effect of avocado HFL on bud IAA accumulation and flowering transition. We found that IAA-aspartate and IAA-glutamate conjugate levels were significantly higher in buds from 'on' (fully loaded) than 'off' (low-loaded) trees, hinting that free IAA levels were higher in the former. Expression analysis showed that coinciding with flowering reduction, HFL induced the floral repressor PaTFL1, and suggested that accumulation of IAA in buds as imposed by HFL was associated with its conjugation to aspartate and glutamate and resulted both from de novo IAA synthesis, as well as from reduced IAA export. Accordingly, experiments involving radiolabelled 14C-IAA demonstrated that HFL reduced shoot basipetal IAA transport. Lastly, we confirmed the negative effects of IAA on flowering, showing that IAA and PAT blocker (TIBA) treatments delayed 'off' trees inflorescence development, reducing their inflorescence axis and inducing PaTFL1 transcript. Together, our data suggest that avocado HFL generates IAA signalling in buds that induces PaTFL1, which represses inflorescence development.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3