From dawn ‘til dusk: daytime progression regulates primary and secondary metabolism in Cannabis glandular trichomes

Author:

Dimopoulos Nicolas1ORCID,Guo Qi1ORCID,Purdy Sarah Jane2ORCID,Nolan Matthew1,Halimi Razlin Azman13ORCID,Mieog Jos Cornelis1ORCID,Barkla Bronwyn J1ORCID,Kretzschmar Tobias1ORCID

Affiliation:

1. Faculty of Science and Engineering, Southern Cross University , Lismore, NSW , Australia

2. Tamworth Agricultural Institute, New South Wales Department of Primary Industries , Tamworth, NSW , Australia

3. School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, Dookie Campus, The University of Melbourne , Dookie, VIC , Australia

Abstract

Abstract Cannabis sativa L. glandular trichomes synthesize large amounts of secondary metabolites, predominantly cannabinoids and terpenoids. The associated demand for carbon and energy makes glandular trichomes strong sink tissues with indications that their secondary metabolism is coupled to the availability of photoassimilates. Many metabolites show diurnal patterns of flux, but it is unknown whether cannabinoids and terpenoids are regulated by time of day. We quantified cannabinoids, terpenoids, and the glandular trichome proteome over a 12 h light period in flowers of ‘Hindu Kush’, a high-tetrahydrocannabinol cultivar. Major cannabinoids changed significantly over the course of the day, resulting in an increase in total measured cannabinoids. Major terpenoids also changed, with sesquiterpenes generally decreasing with day progression. While monoterpenes generally did not decrease, the second most abundant, α-pinene, increased. The glandular trichome proteome changed the most within the first 6 h of the day, and analysis of differentially abundant proteins indicated up-regulation of primary metabolism. Surprisingly, key cannabinoid biosynthetic enzymes decreased with daytime progression despite increases in cannabinoid content, which indicates that daytime increases of photoassimilates are the main driver of cannabinoid regulation. This first reporting of variability of cannabinoid and terpenoid biosynthesis over the course of the day has implications for Cannabis research and production.

Funder

Australian Government via the Department of Industry, Science, Energy and Resources

Publisher

Oxford University Press (OUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3