Prophylactic onlay mesh placement techniques for optimal abdominal wall closure: randomized controlled trial in an ex vivo biomechanical model

Author:

Stephens Ian1ORCID,Conroy Jack23,Winter Des4,Simms Ciaran3,Bucholc Magda5,Sugrue Michael12

Affiliation:

1. Department of Surgery, Letterkenny University Hospital , Letterkenny , Ireland

2. Donegal Clinical Research Academy, Letterkenny University Hospital , Letterkenny , Ireland

3. Trinity Centre for Bioengineering, Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin , Dublin , Ireland

4. Department of Surgery, St Vincent’s University Hospital , Dublin , Ireland

5. EU INTERREG Centre for Personalized Medicine, Intelligent Systems Research Centre, School of Computing, Engineering and Intelligent Systems, Ulster University , Derry-Londonderry , UK

Abstract

Abstract Background Incisional hernias occur after up to 40 per cent of laparotomies. Recent RCTs have demonstrated the role of prophylactic mesh placement in reducing the risk of developing an incisional hernia. An onlay approach is relatively straightforward; however, a variety of techniques have been described for mesh fixation. The biomechanical properties have not been interrogated extensively to date. Methods This ex vivo randomized controlled trial using porcine abdominal wall investigated the biomechanical properties of three techniques for prophylactic onlay mesh placement at laparotomy closure. A classical onlay, anchoring onlay, and novel bifid onlay approach were compared with small-bite primary closure. A biomechanical abdominal wall model and ball burst test were used to assess transverse stretch, bursting force, and loading characteristics. Results Mesh placement took an additional 7–15 min compared with standard primary closure. All techniques performed similarly, with no clearly superior approach. The minimum burst force was 493 N, and the maximum 1053 N. The classical approach had the highest mean burst force (mean(s.d.) 853(152) N). Failure patterns fell into either suture-line or tissue failures. Classical and anchoring techniques provided a second line of defence in the event of primary suture failure, whereas the bifid method demonstrated a more compliant loading curve. All mesh approaches held up at extreme quasistatic loads. Conclusion Subtle differences in biomechanical properties highlight the strengths of each closure type and suggest possible uses. The failure mechanisms seen here support the known hypotheses for early fascial dehiscence. The influence of dynamic loading needs to be investigated further in future studies.

Funder

Donegal Clinical and Research Academy

Publisher

Oxford University Press (OUP)

Subject

Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3