Optimal allocation of solar photovoltaic distributed generation in electrical distribution networks using Archimedes optimization algorithm

Author:

Janamala Varaprasad1ORCID,Radha Rani K2

Affiliation:

1. Department of Electrical and Electronics Engineering, School of Engineering and Technology, CHRIST (Deemed to be University) , Bangalore—560 074, Karnataka , India

2. Department of Electrical & Electronics Engineering, R.V.R. & J.C. College of Engineering , Guntur—522 019, Andhra Pradesh , India

Abstract

Abstract This paper proposes to resolve optimal solar photovoltaic (SPV) system locations and sizes in electrical distribution networks using a novel Archimedes optimization algorithm (AOA) inspired by physical principles in order to minimize network dependence and greenhouse gas (GHG) emissions to the greatest extent possible. Loss sensitivity factors are used to predefine the search space for sites, and AOA is used to identify the optimal locations and sizes of SPV systems for reducing grid dependence and GHG emissions from conventional power plants. Experiments with composite agriculture loads on a practical Indian 22-bus agricultural feeder, a 28-bus rural feeder and an IEEE 85-bus feeder demonstrated the critical nature of optimally distributed SPV systems for minimizing grid reliance and reducing GHG emissions from conventional energy sources. Additionally, the voltage profile of the network has been enhanced, resulting in significant reductions in distribution losses. The results of AOA were compared to those of several other nature-inspired heuristic algorithms previously published in the literature, and it was observed that AOA outperformed them in terms of convergence and redundancy when solving complex, non-linear and multivariable optimization problems. Optimal solar photovoltaic system locations and sizes in electrical distribution networks are derived using a novel Archimedes optimization algorithm in order to minimize network dependence and pollutant emissions to the greatest extent possible.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3