Reference Samples to Compare Next-Generation Sequencing Test Performance for Oncology Therapeutics and Diagnostics

Author:

Pfeifer John D1ORCID,Loberg Robert2,Lofton-Day Catherine3,Zehnbauer Barbara A4

Affiliation:

1. Department of Pathology, Washington University School of Medicine, St Louis, MO, USA

2. Clinical Biomarkers and Diagnostics, Thousand Oaks, CA, USA

3. In Vitro Diagnostics, Amgen, Thousand Oaks, CA, USA

4. Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA

Abstract

Abstract Objectives Diversity of laboratory-developed tests (LDTs) using next-generation sequencing (NGS) raises concerns about their accuracy for selection of targeted therapies. A working group developed a pilot study of traceable reference samples to measure NGS LDT performance among a cohort of clinical laboratories. Methods Human cell lines were engineered via CRISPR/Cas9 and prepared as formalin-fixed, paraffin-embedded cell pellets (“wet” samples) to assess the entire NGS test cycle. In silico mutagenized NGS sequence files (“dry” samples) were used to assess the bioinformatics component of the NGS test cycle. Single and multinucleotide variants (n = 36) of KRAS and NRAS were tested at 5% or 15% variant allele fraction to determine eligibility for therapy with the EGFR inhibitor panitumumab in the setting of metastatic colorectal cancer. Results Twenty-one (21/21) laboratories tested wet samples; 19 of 21 analyzed dry samples. Of the laboratories that tested both the wet and dry samples, 7 (37%) of 19 laboratories correctly reported all variants, 3 (16%) of 19 had fewer than five errors, and 9 (47%) of 19 had five or more errors. Most errors were false negatives. Conclusions Genetically engineered cell lines and mutagenized sequence files are complementary reference samples for evaluating NGS test performance among clinical laboratories using LDTs. Variable accuracy in detection of genetic variants among some LDTs may identify different patient populations for targeted therapy.

Funder

Amgen

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3