Pathologic Spectrum and Molecular Landscape of Myeloid Disorders Harboring SF3B1 Mutations

Author:

Venable Elise R1,Chen Dong1ORCID,Chen Constance P2,Bessonen Kurt R1,Nguyen Phuong L1,Oliveira Jennifer L1,Reichard Kaaren K1,Hoyer James D1,Althoff Simon D1,Roh Dana J1,Miller Mechelle A1,Begna Kebede3,Patnaik Mrinal M3,Litzow Mark R3,Al-Kali Aref3,Viswanatha David S1,He Rong1ORCID

Affiliation:

1. Division of Hematopathology, Mayo Clinic College of Medicine, Rochester, MN, USA

2. College of Science, University of Notre Dame, Notre Dame, IN, USA

3. Division of Hematology, Mayo Clinic College of Medicine, Rochester, MN, USA

Abstract

Abstract Objectives SF3B1 mutations are the most common mutations in myelodysplastic syndromes (MDS). The International Working Group for the Prognosis of MDS (IWG-PM) recently proposed SF3B1-mutant MDS (SF3B1-mut-MDS) as a distinct disease subtype. We evaluated the spectrum and molecular landscape of SF3B1-mutated myeloid disorders and assessed the prognostication in MDS harboring SF3B1 mutations (MDS-SF3B1). Methods Cases were selected by retrospective review. Clinical course and laboratory and clinical findings were collected by chart review. SF3B1-mut-MDS was classified following IWG-PM criteria. Results SF3B1 mutations were identified in 75 of 955 patients, encompassing a full spectrum of myeloid disorders. In MDS-SF3B1, Revised International Prognostic Scoring System (IPSS-R) score greater than 3 and transcription factor (TF) comutations were adverse prognostic markers by both univariate and multivariate analyses. We confirmed the favorable outcome of IWG-PM-defined SF3B1-mut-MDS. Interestingly, it did not show sharp prognostic differentiation within MDS-SF3B1. Conclusions SF3B1 mutations occur in the full spectrum of myeloid disorders. We independently validated the favorable prognostication of IWG-PM-defined SF3B1-mut-MDS. However it may not provide sharp prognostication within MDS-SF3B1 where IPSS-R and TF comutations were prognostic-informative. Larger cohort studies are warranted to verify these findings and refine MDS-SF3B1 prognostication.

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3