Affiliation:
1. Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine , Nagoya , Japan
2. Clinical Engineering, Faculty of Medical Sciences, Juntendo University , Urayasu , Japan
Abstract
Abstract
Objectives
Cytomorphology is known to differ depending on the processing technique, and these differences pose a problem for automated diagnosis using deep learning. We examined the as-yet unclarified relationship between cell detection or classification using artificial intelligence (AI) and the AutoSmear (Sakura Finetek Japan) and liquid-based cytology (LBC) processing techniques.
Methods
The “You Only Look Once” (YOLO), version 5x, algorithm was trained on the AutoSmear and LBC preparations of 4 cell lines: lung cancer (LC), cervical cancer (CC), malignant pleural mesothelioma (MM), and esophageal cancer (EC). Detection and classification rates were used to evaluate the accuracy of cell detection.
Results
When preparations of the same processing technique were used for training and detection in the 1-cell (1C) model, the AutoSmear model had a higher detection rate than the LBC model. When different processing techniques were used for training and detection, detection rates of LC and CC were significantly lower in the 4-cell (4C) model than in the 1C model, and those of MM and EC were approximately 10% lower in the 4C model.
Conclusions
In AI-based cell detection and classification, attention should be paid to cells whose morphologies change significantly depending on the processing technique, further suggesting the creation of a training model.
Publisher
Oxford University Press (OUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献