Plexiform fibrohistiocytic tumor: A series of 10 case studies

Author:

Wang Yan Xia1,Ma Li Li1,Xu Wan Ni1,Hu Pei Zhen1,Yang Shou Jing1

Affiliation:

1. Department of Pathology, Xi Jing Hospital, Fourth Military Medical University , Xi’an , China

Abstract

Abstract Objectives We sought to investigate the clinicopathologic features and differential diagnosis of plexiform fibrohistiocytic tumor (PFHT) and its pathogenesis. Methods Ten cases of PFHT were collected from Xi Jing Hospital, Fourth Military Medical University, from September 2008 to December 2022 for clinical data as well as microscopic and immunohistochemical observation. CCND1 gene amplification and break were assayed by fluorescence in situ hybridization (FISH). Results We report 10 cases of PFHT according to histologic classification. Seven cases were of histiocytoid type, and 3 had mucous degeneration in the nodules. One case was of fibroblastic type, which was mainly composed of fibroblast-like cells. Two cases were of mixed type. Immunohistochemically, the osteoclast-like multinucleated giant cells, histiocyte-like cells, and occasional spindle cells in the adjacent fascicles were reactive for CD68 (10/10), CD163 (5/8), CD10 (8/8), cyclin D1 (8/8), CDK4 (5/8), β-catenin (4/6), MITF (2/6), and PGP9.5 (4/5). Vimentin (9/9) was strongly positive in tumor cells and peripheral fibroblast-like cells. The positive index of Ki-67 was 5% to 40%, with an average of 20%. The FISH analysis showed neither amplification nor break of the CCND1 gene. All cases underwent surgical resection, and patients were followed up for 9 months to 11 years. Only 2 cases recurred. Conclusions Plexiform fibrohistiocytic tumor is a low-grade malignant soft tissue neoplasm. The diagnosis mainly depends on histopathologic and immunohistochemical markers. Cyclin D1 and CD10 expression has diagnostic value for the diagnosis and differential diagnosis of PFHT combined with its plexiform morphology. The overexpression of cyclin D1 suggests an involvement of cell cycle regulatory genes in the pathogenesis of PFHT.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3