A Comparison of Solidification Structures and Submicroscale Cellular Segregation in Rapidly Solidified Stainless Steels Produced via Two-Piston Splat Quenching and Laser Powder Bed Fusion

Author:

Hasenbusch Zachary Arthur1ORCID,Deal Andrew2,Brown Ben2,Wilson Davis2,Nastac Laurentiu1ORCID,Brewer Luke N1

Affiliation:

1. Metallurgical and Materials Engineering, The University of Alabama , 3043 H.M. Comer, 245 7th Avenue, Tuscaloosa, AL 35487 , USA

2. Department of Energy's National Security Campus, Honeywell Federal Manufacturing & Technologies , Botts Road, Kansas City, MO 14520 , USA

Abstract

Abstract Fusion-based additive manufacturing techniques leverage rapid solidification (RS) conditions to create parts with complex geometries, unique microscale/nanoscale morphological features, and elemental segregation. Three custom composition stainless steel alloys with varying chromium equivalence to nickel equivalence ratio (Creq/Nieq) between 1.53 and 1.95 were processed using laser powder bed fusion (LPBF) and/or two-piston splat quenching (SQ) to produce solidification rates estimated between 0.4 and 0.8 m/s. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to collect high-resolution images, electron backscatter diffraction (EBSD) phase identification, and measure cellular segregation. Similar features were observed in both LPBF and SQ samples including phase and microstructure, nanoscale oxide particles, cell size, and segregation behavior. However, dislocation pileup was observed along the cell boundaries only in the LPBF austenite solidified microstructure. Targeted adjustment of the SQ feedstock Cr and Ni concentrations, within the ASTM A240 specification for 316L resulted in no observable impact on the cell size, oxide particle size, or magnitude of segregation. Also, the amount of Ni segregation in the ferrite solidified microstructures did not significantly differ, regardless of Cr/Nieq or processing technique. SQ is demonstrated as capable of simulating RS rates and microstructures similar to LPBF for use as an alternative screening tool for new RS alloy compositions.

Publisher

Oxford University Press (OUP)

Subject

Instrumentation

Reference71 articles.

1. An investigation on mechanical and microstructural properties of 316LSi parts fabricated by a robotized laser/wire direct metal deposition system;Akbari;Additive Manufacturing,2018

2. Model for solute redistribution during rapid solidification;Aziz;J Appl Phys,1982

3. Steels in additive manufacturing: A review of their microstructure and properties;Bajaj;Materials Science and Engineering: A,2020

4. 316L Stainless steel mechanical and tribological behavior—A comparison between selective laser melting, hot pressing and conventional casting;Bartolomeu;Additive Manufacturing,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3