Optical Measurement of the Stoichiometry of Thin-Film Compounds Synthetized From Multilayers: Example of Cu(In,Ga)Se2

Author:

Poeira Ricardo G1ORCID,Siopa Daniel1,Anacleto Pedro2,Sadewasser Sascha2ORCID,Dale Phillip J1

Affiliation:

1. Department of Physics and Materials Science, University of Luxembourg , 41, rue du Brill , L-4422 Belvaux, Luxembourg

2. INL—International Iberian Nanotechnology Laboratory , Av. Mestre José Veiga s/n , 4715-330 Braga, Portugal

Abstract

Abstract The properties of centimeter-sized thin-film compound semiconductors depend upon the morphology and chemical composition of the multiple submicrometer-thick elemental and alloy precursor layers from which they are synthesized. The challenge is to characterize the individual precursor layers over these length scales during a multistep synthesis without altering or contaminating them. Conventional electron and X-ray-based morphological and compositional techniques are invasive, require preparation, and are thus incompatible with in-line synthesis processes. In a proof-of-concept study, we applied confocal laser scanning microscopy (CLSM) as a noninvasive optical imaging technique, which measures three-dimensional surface profiles with nanoscale resolution, to this challenge. Using an array of microdots containing Cu(In,Ga)Se2 semiconductor layers for solar cells as an example, we performed CLSM correlative studies to quantify morphological and layer thickness changes during four stages of a thin-film compound synthesis. Using simple assumptions, we measured the micrometer-scale spatially resolved chemical composition of stacked precursor layers to predict the final material phases formed and predict relative device performance. The high spatial resolution, coupled with the ability to measure sizeable areas without influencing the synthesis at high speed, makes CLSM an excellent prospect for research and quality control tool for thin films.

Publisher

Oxford University Press (OUP)

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3