Autonomous Electron Tomography Reconstruction with Machine Learning

Author:

Millsaps William1ORCID,Schwartz Jonathan2ORCID,Di Zichao Wendy3,Jiang Yi4,Hovden Robert25ORCID

Affiliation:

1. Department of Nuclear Engineering & Radiological Sciences, University of Michigan , 2300 Hayward St, Ann Arbor, MI 48109 , USA

2. Department of Materials Science and Engineering, University of Michigan , 2300 Hayward St, Ann Arbor, MI 48109 , USA

3. Mathematics and Computer Science Division, Argonne National Laboratory , 9700 S. Cass Ave, Lemont, IL 60439 , USA

4. Advanced Photon Source Facility, Argonne National Laboratory , 9700 S. Cass Ave, Lemont, IL 60439 , USA

5. Applied Physics Program, University of Michigan , 2300 Hayward St, Ann Arbor, MI 48109 , USA

Abstract

Abstract Modern electron tomography has progressed to higher resolution at lower doses by leveraging compressed sensing (CS) methods that minimize total variation (TV). However, these sparsity-emphasized reconstruction algorithms introduce tunable parameters that greatly influence the reconstruction quality. Here, Pareto front analysis shows that high-quality tomograms are reproducibly achieved when TV minimization is heavily weighted. However, in excess, CS tomography creates overly smoothed three-dimensional (3D) reconstructions. Adding momentum to the gradient descent during reconstruction reduces the risk of over-smoothing and better ensures that CS is well behaved. For simulated data, the tedious process of tomography parameter selection is efficiently solved using Bayesian optimization with Gaussian processes. In combination, Bayesian optimization with momentum-based CS greatly reduces the required compute time—an 80% reduction was observed for the 3D reconstruction of SrTiO3 nanocubes. Automated parameter selection is necessary for large-scale tomographic simulations that enable the 3D characterization of a wider range of inorganic and biological materials.

Publisher

Oxford University Press (OUP)

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3