Digital Microscopy Augmented by Artificial Intelligence to Interpret Bone Marrow Samples for Hematological Diseases

Author:

Bermejo-Peláez David1ORCID,Rueda Charro Sandra1,García Roa María2,Trelles-Martínez Roberto2ORCID,Bobes-Fernández Alejandro2,Hidalgo Soto Marta3,García-Vicente Roberto45ORCID,Morales María Luz45,Rodríguez-García Alba45,Ortiz-Ruiz Alejandra45,Blanco Sánchez Alberto6ORCID,Mousa Urbina Adriana1,Álamo Elisa1,Lin Lin17,Dacal Elena1,Cuadrado Daniel1,Postigo María1,Vladimirov Alexander1,Garcia-Villena Jaime1,Santos Andrés78ORCID,Ledesma-Carbayo María Jesús78,Ayala Rosa456,Martínez-López Joaquín456,Linares María459,Luengo-Oroz Miguel1ORCID

Affiliation:

1. Spotlab , P.º de Juan XXIII, 36B, Madrid 28040 , Spain

2. Department of Hematology, Hospital Universitario Fundación Alcorcón , C. Budapest, 1, Alcorcón 28922, Madrid , Spain

3. Vall Hebron Institute of Oncology (VHIO) , Carrer de Natzaret, 115-117, Horta-Guinardó, Barcelona 08035 , Spain

4. Department of Translational Hematology, Research Institute Hospital 12 de Octubre (imas12) , Av. de Córdoba, s/n, Madrid 28041 , Spain

5. Hematological Malignancies Clinical Research Unit H120-CNIO, CIBERONC , C. de Melchor Fernández Almagro, 3, Madrid 28029 , Spain

6. Department of Hematology, Hospital Universitario 12 de Octubre , Av. de Córdoba, s/n, Madrid 28041 , Spain

7. Biomedical Image Technologies Laboratory, ETSI Telecomunicación, Universidad Politécnica de Madrid , Av. Complutense, 30, Madrid 28040 , Spain

8. CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III , C. de Melchor Fernández Almagro, 3, Madrid 28029 , Spain

9. Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid , Pl. de Ramón y Cajal, s/n, Madrid 28040 , Spain

Abstract

Abstract Analysis of bone marrow aspirates (BMAs) is an essential step in the diagnosis of hematological disorders. This analysis is usually performed based on a visual examination of samples under a conventional optical microscope, which involves a labor-intensive process, limited by clinical experience and subject to high observer variability. In this work, we present a comprehensive digital microscopy system that enables BMA analysis for cell type counting and differentiation in an efficient and objective manner. This system not only provides an accessible and simple method to digitize, store, and analyze BMA samples remotely but is also supported by an Artificial Intelligence (AI) pipeline that accelerates the differential cell counting process and reduces interobserver variability. It has been designed to integrate AI algorithms with the daily clinical routine and can be used in any regular hospital workflow.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3