A Machine Learning Framework for Quantifying Chemical Segregation and Microstructural Features in Atom Probe Tomography Data

Author:

Saxena Alaukik1ORCID,Polin Nikita1,Kusampudi Navyanth1ORCID,Katnagallu Shyam1,Molina-Luna Leopoldo2,Gutfleisch Oliver3,Berkels Benjamin4,Gault Baptiste15ORCID,Neugebauer Jörg1,Freysoldt Christoph1

Affiliation:

1. Max-Planck-Institut für Eisenforschung GmbH , Max-Planck-Straße 1, 40237 Düsseldorf , Germany

2. Department of Materials and Earth Sciences, Technische Universität Darmstadt, Peter-Grünberg-Straße 2, 64287 Darmstadt, Germany

3. Functional Materials, Institute of Materials Science, Technical University of Darmstadt, Alarich-Weiss-Straße 16, 64287 Darmstadt, Germany

4. Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University , Schinkelstr. 2, 52062 Aachen, Germany

5. Department of Materials, Royal School of Mines, Imperial College London, SW7 2AZ London, UK

Abstract

Abstract Atom probe tomography (APT) is ideally suited to characterize and understand the interplay of segregation and microstructure in modern multi-component materials. Yet, the quantitative analysis typically relies on human expertise to define regions of interest. We introduce a computationally efficient, multi-stage machine learning strategy to identify compositionally distinct domains in a semi-automated way, and subsequently quantify their geometric and compositional characteristics. In our algorithmic pipeline, we first coarse-grain the APT data into voxels, collect the composition statistics, and decompose it via clustering in composition space. The composition classification then enables the real-space segmentation via a density-based clustering algorithm, thus revealing the microstructure at voxel resolution. Our approach is demonstrated for a Sm–(Co,Fe)–Zr–Cu alloy. The alloy exhibits two precipitate phases with a plate-like, but intertwined morphology. The primary segmentation is further refined to disentangle these geometrically complex precipitates into individual plate-like parts by an unsupervised approach based on principle component analysis, or a U-Net-based semantic segmentation trained on the former. Following the composition and geometric analysis, detailed composition distribution and segregation effects relative to the predominant plate-like geometry can be readily mapped from the point cloud, without resorting to the voxel compositions.

Publisher

Oxford University Press (OUP)

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3