In Situ Transmission Electron Microscopy Study of Bubble Behavior Near the Surface of Ice Crystals by Using a Liquid Cell With a Peltier Cooling Holder

Author:

Yamazaki Tomoya1ORCID,Yashima Yuga1,Katsuno Hiroyasu1ORCID,Miyazaki Hiroya2,Gondo Takashi2,Kimura Yuki1ORCID

Affiliation:

1. Institute of Low Temperature Science, Hokkaido University , Kita-19, Nishi-8, Kita-ku , Sapporo 060-0819, Japan

2. Mel-Build Corporation , 2-11-36, Ishimaru, Nishi-ku , Fukuoka 819-0025, Japan

Abstract

Abstract Liquid cell transmission electron microscopy (LC-TEM) is a unique technique that permits in situ observations of various phenomena in liquids with high spatial and temporal resolutions. One difficulty with this technique is the control of the environmental conditions in the observation area. Control of the temperature ranging from room temperature to minus several tens of degrees Celsius, is desirable for controlling the supersaturation in various materials and for observing crystallization more easily. We have developed a cooling transmission electron microscopy specimen holder that uses Peltier devices, and we have combined it with a liquid cell to realize accurate temperature control in LC-TEM. We evaluated this system by using water as a specimen. Motionless bubbles, shown to be voids containing pressurized gas, formed in the specimen sometime after the temperature had reached −12°C. An electron diffraction pattern showed that the specimen turned into ice Ih after the formation of these bubbles, confirming that our system works properly and can induce crystallization. In addition, we analyzed the behavior of bubbles formed in the ice Ih, and we discussed the formation of these bubbles and their internal pressure.

Publisher

Oxford University Press (OUP)

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3