Automated Sarcomere Structure Analysis for Studying Cardiotoxicity in Human Pluripotent Stem Cell-Derived Cardiomyocytes

Author:

Cao Lu1ORCID,Schoenmaker Linde2,Ten Den Simone A3,Passier Robert34ORCID,Schwach Verena3,Verbeek Fons J1

Affiliation:

1. Imaging and Bioinformatics Group, Leiden Institute of Advanced Computer Science (LIACS), Leiden University , Leiden 2333 CA , The Netherlands

2. Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University , Leiden 2333 CC , The Netherlands

3. Applied Stem Cell Technologies, TechMed Centre, University of Twente , Enschede 7522 NB , The Netherlands

4. Department of Anatomy and Embryology, Leiden University Medical Centre , Leiden 2300 RC , The Netherlands

Abstract

Abstract Drug-induced cardiotoxicity is one of the main causes of heart failure (HF), a worldwide major and growing public health issue. Extensive research on cardiomyocytes has shown that two crucial features of the mechanisms involved in HF are the disruption of striated sarcomeric organization and myofibril deterioration. However, most studies that worked on extracting these sarcomere features have only focused on animal models rather than the more representative human pluripotent stem cells (hPSCs). Currently, there are limited established image analysis systems to specifically assess and quantify the sarcomeric organization of hPSC-derived cardiomyocytes (hPSC-CMs). Here, we report a fully automated and robust image analysis pipeline to detect z-lines and myofibrils from hPSC-CMs with a high-throughput live-imaging setup. Phenotype measurements were further quantified to evaluate the cardiotoxic effect of the anticancer drug Doxorubicin. Our findings show that this pipeline is able to capture z-lines and myofibrils. The pipeline filters out disrupted sarcomere structures and irrelevant noisy signals, which allows us to perform automated high-throughput imaging for accurate quantification of cardiomyocyte injury.

Publisher

Oxford University Press (OUP)

Subject

Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3