Systematic investigation of the effect of 56Ni mixing in the early photospheric velocity evolution of stripped-envelope supernovae

Author:

Moriya Takashi J12ORCID,Suzuki Akihiro1,Takiwaki Tomoya1ORCID,Pan Yen-Chen1,Blinnikov Sergei I345

Affiliation:

1. National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

2. School of Physics and Astronomy, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia

3. National Research Center ‘Kurchatov institute’, Institute for Theoretical and Experimental Physics (ITEP), 117218 Moscow, Russia

4. Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Universitetski pr. 13, 119234 Moscow, Russia

5. Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan

Abstract

ABSTRACT Mixing of 56Ni, whose nuclear decay energy is a major luminosity source in stripped-envelope supernovae, is known to affect the observational properties of stripped-envelope supernovae such as light-curve and colour evolution. Here we systematically investigate the effect of 56Ni mixing on the photospheric velocity evolution in stripped-envelope supernovae. We show that 56Ni mixing significantly affects the early photospheric velocity evolution. The photospheric velocity, which is often used to constrain the ejecta mass and explosion energy, significantly varies by just changing the degree of 56Ni mixing. In addition, the models with a small degree of 56Ni mixing show a flattening in the early photospheric velocity evolution, while the fully mixed models show a monotonic decrease. The velocity flattening appears in both helium and carbon+oxygen progenitor explosions with a variety of ejecta mass, explosion energy, and 56Ni mass. Some stripped-envelope supernovae with early photospheric velocity information do show such a flattening. We find that Type Ib SN 2007Y, which has early photospheric velocity information, has a signature of a moderate degree of 56Ni mixing in the photospheric velocity evolution and about half of the ejecta is mixed in it. The immediate spectroscopic follow-up observations of stripped-envelope supernovae shortly after the explosion providing the early photospheric evolution give an important clue to constrain 56Ni mixing in the ejecta.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3