Evolution of eccentric stellar discs around supermassive black holes: the complex disc disruption dynamics and the milliparsec stars

Author:

Rantala Antti1ORCID,Naab Thorsten1ORCID

Affiliation:

1. Max-Planck-Institut für Astrophysik , Karl-Schwarzschild-Str. 1, D-85748, Garching , Germany

Abstract

ABSTRACT We study the 10 Myr evolution of parsec-scale stellar discs with initial masses of Mdisc = 1.0–$7.5 \times 10^4\, \mathrm{M}_\odot$ and eccentricities einit = 0.1–0.9 around supermassive black holes (SMBHs). Our disc models are embedded in a spherical background potential and have top-heavy single and binary star initial mass functions (IMF) with slopes of 0.25–1.7. The systems are evolved with the N-body code BIFROST, including post-Newtonian (PN) equations of motion and simplified stellar evolution. All discs are unstable and evolve on Myr time-scales towards similar eccentricity distributions peaking at e⋆ ∼ 0.3–0.4. Models with high einit also develop a very eccentric (e⋆ ≳ 0.9) stellar population. For higher disc masses Mdisc ≳ 3 × 104 M⊙, the disc disruption dynamics is more complex than the standard secular eccentric disc instability with opposite precession directions at different disc radii – a precession direction instability. We present an analytical model describing this behaviour. A milliparsec population of N ∼ 10–100 stars forms around the SMBH in all models. For low einit, stars migrate inward while for einit ≳ 0.6 stars are captured by the Hills mechanism. Without PN, after 6 Myr, the captured stars have a sub-thermal eccentricity distribution. We show that including PN effects prevents this thermalization by suppressing resonant relaxation effects and cannot be ignored. The number of tidally disrupted stars is similar or larger than the number of milliparsec stars. None of the simulated models can simultaneously reproduce the kinematic and stellar population properties of the Milky Way centre clockwise disc and the S-cluster.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3