“The ice-organic-silicate contents of small solar system bodies: indicators for a comet to asteroid evolutionary pathway”

Author:

Tripathi Havishk1ORCID,Potiszil Christian1,Tanaka Ryoji1ORCID,Nakamura Eizo1

Affiliation:

1. The Pheasant Memorial Laboratory, Institute for Planetary, Materials, Okayama University, 827 Yamada, Misasa, Tottori 682-0193, Japan

Abstract

ABSTRACT Comets and asteroids have traditionally been separated categories, but main belt comets skew this view, portraying a possible intermediate stage between these two endmembers. Investigating the relationship between these bodies can improve our understanding of the formation and evolution of the Solar System and help to identify potentially interesting parent bodies from within our solar system, for future sample return missions. Furthermore, elucidating the ice-organic-silicate ratios of potential meteorite parent bodies can help to explain the observed isotopic ratios and petrography of meteorite samples. While the ice-organic-silicate ratios of particular bodies have been estimated, there has been no study undertaken which compares different types of bodies in terms of their ice-organic-silicate ratios. Therefore, this study presents a geophysical-chemical mass balance model, to estimate the ice-organic-silicate ratios of comets, main belt comets and asteroids. The results drawn from the model form a diagonal trend upon an ice-organic-silicate ternary diagram, in which comets and main belt comets plot together at generally higher ice contents, with asteroids typically plotting at lower ice contents. However, an overlap between all three body types is observed and supports the scenario in which comets, main belt comets and asteroids are genetically linked.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3