Affiliation:
1. Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Manchester M13 9PL, UK
Abstract
ABSTRACT
Varying fundamental constants (VFC; e.g. the fine-structure constant, αEM) can arise in numerous extended cosmologies. Through their effect on the decoupling of baryons and photons during last scattering and reionization, these models can be directly constrained using measurements of the cosmic microwave background (CMB) temperature and polarization anisotropies. Previous investigations focused mainly on time-independent changes to the values of fundamental constants. Here we generalize to time-dependent variations. Instead of directly studying various VFC parametrizations, we perform a model-independent principal component analysis (PCA), directly using an eigenmode decomposition of the varying constant during recombination. After developing the formalism, we use Planck 2018 data to obtain new VFC limits, showing that three independent VFC modes can be constrained at present. No indications for significant departures from the standard model are found with Planck data. Cosmic variance limited modes are also compared and simple forecasts for the Simons Observatory are carried out, showing that in the future improvements of the current constraints by a factor of ≃3 can be anticipated. Our modes focus solely on VFC at redshifts z ≥ 300. This implies that they do not capture some of the degrees of freedom relating to the reionization era. This aspect provides important new insights into the possible origin of the Hubble tension, hinting that indeed a combined modification of recombination and reionization physics could be at work. An extended PCA, covering both recombination and reionization simultaneously, could shed more light on this question, as we emphasize here.
Funder
ERC
Horizon 2020 Framework Programme
Royal Society
University of Manchester
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献