The large amplitude X-ray variability in NGC 7589: possible evidence for accretion mode transition

Author:

Liu Zhu1ORCID,Liu He-Yang12,Cheng Huaqing12ORCID,Qiao Erlin12,Yuan Weimin12

Affiliation:

1. Key Laboratory of Space Astronomy and Technology, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

2. School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

ABSTRACT We report the discovery of large amplitude X-ray variability in the low-luminosity active galactic nucleus NGC 7589, and present possible observational evidence for accretion mode transition in this source. Long-term X-ray flux variations by a factor of more than 50 are found using X-ray data obtained by Swift/X-Ray Telescope and XMM–Newton over 17 yr. Results of long-term monitoring data in the UV, optical, and infrared bands over ∼20 yr are also presented. The Eddington ratio λEdd increased from 10−3 to ∼0.13, suggesting a transition of the accretion flow from an advection dominated accretion flow to a standard thin accretion disc. Further evidence supporting the thin disc in the high-luminosity state is found by the detection of a significant soft X-ray component in the X-ray spectrum. The temperature of this component ($\sim 19^{+15}_{-7}$ eV, fitted with a blackbody model) is in agreement with the predicted temperature of the inner region for a thin disc around a black hole (BH) with mass of ∼107M⊙. These results may indicate that NGC 7589 had experienced accretion mode transition over a time-scale of a few years, suggesting the idea that similar accretion processes are at work for massive BH and BH X-ray binaries.

Funder

Chinese Academy of Sciences

National Natural Science Foundation of China

ESA

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3