Solar wind interaction with Mars: electric field morphology and source terms

Author:

Wang Xiao-Dong1,Fatemi Shahab2,Nilsson Hans1ORCID,Futaana Yoshifumi1,Holmström Mats1,Barabash Stas1

Affiliation:

1. Solar System Physics and Space Technology programme, Swedish Institute of Space Physics , 981 92, Kiruna , Sweden

2. Department of Physics, Umeå University , 901 87, Umeå , Sweden

Abstract

ABSTRACTThe correlation between space environment conditions and the properties of escaping ions is a central topic of Mars research. Although empirical correlations have been visible in the data, a physics-based interpretation, rather than statistics-based pictures, has not been established yet. As a first effort, we investigate the electric field, the direct contributor to ion acceleration, in the Mars plasma environment from a hybrid plasma model (particle ions and fluid electrons). We use Amitis, a hybrid model combined with an observation-based ionospheric model, to simulate the Mars–solar wind interaction under nominal solar wind plasma conditions for perpendicular and Parker spiral directions of the interplanetary magnetic field (IMF). The simulations show following results: (1) the electric field morphology is structured by the IMF direction and the different plasma domains in the solar wind–Mars interaction; (2) asymmetry of the electric field between the hemispheres where the convective electric field points inward and outward, respectively, due to the mass loading and asymmetric draping of the magnetic field lines; (3) the motional electric field dominates in most regions, especially in the dayside magnetosheath; and (4) the Hall term is an order of magnitude weaker and significant in the magnetotail and plasma boundaries for a perpendicular IMF case. The Hall term is relatively stronger for the Parker spiral case. (5) The ambipolar electric field, in principle, agrees with Mars Atmosphere and Volatile Evolution measurements in the magnetosheath.

Funder

Swedish National Space Agency

Swedish Research Council

Nvidia

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3