The CO universe: modelling CO emission and H2 abundance in cosmological galaxy formation simulations

Author:

Inoue Shigeki1234ORCID,Yoshida Naoki345,Yajima Hidenobu1

Affiliation:

1. Center for Computational Sciences, University of Tsukuba, Ten-nodai, 1-1-1 Tsukuba, Ibaraki 305-8577, Japan

2. Chile Observatory, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan

3. Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS, The University of Tokyo, Chiba 277-8583, Japan

4. Department of Physics, School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan

5. Research Center for the Early Universe, School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan

Abstract

ABSTRACT We devise a physical model of formation and distribution of molecular gas clouds (MGCs) in galaxies. We use the model to predict the intensities of rotational transition lines of carbon monoxide (CO) and the molecular hydrogen (H2) abundance. Using the outputs of IllustrisTNG cosmological simulations, we populate MGCs of unresolved sizes in individual simulated galaxies, where the effect of the interstellar radiation field with dust attenuation is also taken into account. We then use the publicly available code despotic (Derive the Energetics and SPectra of Optically Thick Interstellar Clouds) to compute the CO line luminosities and H2 densities without assuming the CO-to-H2 conversion factor (αCO). Our method allows us to study the spatial and kinematic structures traced by CO(1–0) and higher transition lines. We compare the CO luminosities and H2 masses with recent observations of galaxies at low and high redshifts. Our model reproduces well the observed CO–luminosity function and the estimated H2 mass in the local UniverseAbout 10 per cent of molecules in the Universe reside in dwarf galaxies with stellar masses lower than 109 M⊙, but the galaxies are generally ‘CO-dark’ and have typically high αCO. Our model predicts generally lower CO line luminosities than observations at redshifts z ≳ 1–2. We argue that the difference can be explained by the highly turbulent structure suggested for the high-redshift star-forming galaxies.

Funder

NAOJ

MEXT

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3