The physical properties and evolution of the interacting system AM 1204−292

Author:

Rosa D A1,Rodrigues I1ORCID,Krabbe A C1ORCID,Milone A C2ORCID,Carvalho S1

Affiliation:

1. Instituto de Pesquisa & Desenvolvimento (IP&D), Universidade do Vale do Paraíba, Av. Shishima Hifumi 2911, 12244-000 São José dos Campos–SP, Brazil

2. Instituto Nacional de Pesquisas Espaciais (INPE), Divisão de Astrofísica, Av. dos Astronautas 1758, 12227-010 São José dos Campos–SP, Brazil

Abstract

ABSTRACT We investigate interaction effects in the stellar and gas kinematics, stellar population, and ionized gas properties of the interacting galaxy pair AM 1204−292,composed of NGC 4105 and NGC 4106. The data consist of long-slit spectra in the range 3000–7050 Å. The massive E3 galaxy NGC 4105 presents a flat stellar velocity profile, while the ionized gas is in strong rotation, suggesting an external origin. Its companion, NGC 4106, shows asymmetries in the radial velocity field, likely due to the interaction. The dynamics of the interacting pair were modelled using the P-Gadget3 treepm/sph code, from which we show that the system has just passed the first perigalacticum, which triggered an outbreak of star formation, currently at full maximum. We characterized the stellar population properties using the stellar population synthesis code starlight and, on average, both galaxies are predominantly composed of old stellar populations. NGC 4105 has a slightly negative age gradient, comparable with that of the most massive elliptical galaxies, but a steeper metallicity gradient. The SB0 galaxy NGC 4106 presents smaller radial variations in both age and metallicity in comparison with intermediate-mass early-type galaxies. These gradients have not been disturbed by interaction, since the star formation happened very recently and was not extensive in mass. Electron density estimates for the pair are systematically higher than those obtained in isolated galaxies. The central O/H abundances were obtained from photoionization models in combination with emission-line ratios, which resulted in 12 + log(O/H) = 9.03 ± 0.02 and 12 + log(O/H) = 8.69 ± 0.05 for NGC 4105 and NGC 4106, respectively.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3