Affiliation:
1. Jet Propulsion Laboratory, California Institute of Technology , 4800 Oak Grove Drive, Pasadena, CA 91109, USA
Abstract
ABSTRACT
We investigate whether the shapes of galaxy clusters inferred from weak gravitational lensing can be used as a test of the nature of dark matter. We analyse mock weak lensing data, with gravitational lenses extracted from cosmological simulations run with two different dark matter models: cold dark matter (CDM) and self-interacting dark matter (SIDM). We fit elliptical Navarro–Frenk–White profiles to the shear fields of the simulated clusters. Despite large differences in the distribution of 3D shapes between CDM and SIDM, we find that the distributions of weak-lensing-inferred cluster shapes are almost indistinguishable. We trace this information loss to two causes. First, weak lensing measures the shape of the projected mass distribution, not the underlying 3D shape, and projection effects wash out some of the difference. Secondly, weak lensing is most sensitive to the projected shape of clusters, on a scale approaching the virial radius ($\sim\! 1.5 \mathrm{\, Mpc}$), whereas SIDM shapes differ most from CDM in the inner halo. We introduce a model for the mass distribution of galaxy clusters where the ellipticity of the mass distribution can vary with distance to the centre of the cluster. While this mass distribution does not enable weak lensing data to distinguish between CDM and SIDM with cluster shapes (the ellipticity at small radii is poorly constrained by weak lensing), it could be useful when modelling combined strong and weak gravitational lensing of clusters.
Funder
National Aeronautics and Space Administration
JPL Information and Technology Solutions Directorate
STFC
Durham University
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献