Investigation of stellar magnetic activity using variational autoencoder based on low-resolution spectroscopic survey

Author:

Xiang Yue12ORCID,Gu Shenghong123,Cao Dongtao12

Affiliation:

1. Yunnan Observatories, Chinese Academy of Sciences , Kunming 650216, China

2. Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences , Kunming 650216, China

3. School of Astronomy and Space Science, University of Chinese Academy of Sciences , Beijing 101408, China

Abstract

ABSTRACT We apply the variational autoencoder (VAE) to the LAMOST-K2 low-resolution spectra to detect the magnetic activity of the stars in the K2 field. After the training on the spectra of the selected inactive stars, the VAE model can efficiently generate the synthetic reference templates needed by the spectral subtraction procedure, without knowing any stellar parameters. Then, we detect the peculiar spectral features, such as chromospheric emissions, strong nebular emissions, and lithium absorptions, in our sample. We measure the emissions of the chromospheric activity indicators, Hα and Ca ii infrared triplet (IRT) lines, to quantify the stellar magnetic activity. The excess emissions of Hα and Ca ii IRT lines of the active stars are correlated well to the rotational periods and the amplitudes of light curves derived from the K2 photometry. We degrade the LAMOST spectra to simulate the slitless spectra of the China Space Station Telescope (CSST) and apply the VAE to the simulated data. For cool active stars, we reveal a good agreement between the equivalent widths of Hα line derived from the spectra with two resolutions. The result indicates the ability of identifying the magnetically active stars in the future CSST survey, which will deliver an unprecedented large data base of low-resolution spectra as well as simultaneous multiband photometry of stars.

Funder

National Natural Science Foundation of China

National Development and Reform Commission

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3