Assessing the effect of lens mass model in cosmological application with updated galaxy-scale strong gravitational lensing sample

Author:

Chen Yun1,Li Ran12ORCID,Shu Yiping3ORCID,Cao Xiaoyue12

Affiliation:

1. Key Laboratory for Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China

3. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

Abstract

ABSTRACT By comparing the dynamical and lensing masses of early-type lens galaxies, one can constrain both the cosmological parameters and the density profiles of galaxies. We explore the constraining power on cosmological parameters and the effect of the lens mass model in this method with 161 galaxy-scale strong lensing systems, which is currently the largest sample with both high-resolution imaging and stellar dynamical data. We assume a power-law mass model for the lenses, and consider three different parametrizations for γ (i.e. the slope of the total mass density profile) to include the effect of the dependence of γ on redshift and surface mass density. When treating δ (i.e. the slope of the luminosity density profile) as a universal parameter for all lens galaxies, we find the limits on the cosmological parameter Ωm are quite weak and biased, and also heavily dependent on the lens mass model in the scenarios of parametrizing γ with three different forms. When treating δ as an observable for each lens, the unbiased estimate of Ωm can be obtained only in the scenario of including the dependence of γ on both the redshift and the surface mass density, that is $\Omega _\mathrm{ m} = 0.381^{+0.185}_{-0.154}$ at 68 per cent confidence level in the framework of a flat ΛCDM model. We conclude that the significant dependencies of γ on both the redshift and the surface mass density, as well as the intrinsic scatter of δ among the lenses, need to be properly taken into account in this method.

Funder

National Natural Science Foundation of China

National Key Program for Science and Technology Research and Development of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3