Numerical analysis of long-term variability of AGN jets through RMHD simulations

Author:

Acharya Sriyasriti1ORCID,Borse Nikhil S1ORCID,Vaidya Bhargav1ORCID

Affiliation:

1. Discipline of Astronomy Astrophysics and Space Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, Madhya Pradesh, India

Abstract

ABSTRACT Relativistic AGN (active galactic nucleus) jets exhibit multitime-scale variability and a broad-band non-thermal spectrum extending from radio to gamma-rays. These highly magnetized jets are prone to undergo several magnetohydrodynamic (MHD) instabilities during their propagation in space and could trigger jet radiation and particle acceleration. This work aims to study the implications of relativistic kink mode instability on the observed long-term variability in the context of the twisting in-homogeneous jet model. To achieve this, we investigate the physical configurations preferable for forming kink mode instability by performing high-resolution 3D relativistic MHD simulations of a portion of highly magnetized jets. In particular, we perform simulations of cylindrical plasma column with Lorentz factor ≥5 and study the effects of magnetization values and axial wavenumbers with decreasing pitch on the onset and growth of kink instability. We have confirmed the impact of axial wavenumber on the dynamics of the plasma column including the growth of the instability. In this work, we have further investigated the connection between the dynamics of the plasma column with its time-varying emission features. From our analysis, we find a correlated trend between the growth rate of kink mode instability and the flux variability obtained from the simulated light curve.

Funder

DST

Department of Science & Technology

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3