The response of dark matter haloes to gas ejection: CuspCore II

Author:

Li Zhaozhou1ORCID,Dekel Avishai12ORCID,Mandelker Nir1ORCID,Freundlich Jonathan3ORCID,François Thibaut L3

Affiliation:

1. Centre for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University , Jerusalem, 91904, Israel

2. Santa Cruz Institute for Particle Physics, University of California , Santa Cruz, CA 95064, USA

3. Observatoire Astronomique, Université de Strasbourg , CNRS, 11 rue de l’Université, F-67000 Strasbourg, France

Abstract

ABSTRACT We propose an analytic model, CuspCore II, for the response of dark matter (DM) haloes to central gas ejection, as a mechanism for generating DM-deficient cores in dwarfs and high-z massive galaxies. We test this model and three other methods using idealized N-body simulations. The current model is physically justified and provides more accurate predictions than the earlier version, CuspCore I (Freundlich et al. 2020a). The CuspCore model assumes an instantaneous change of potential, followed by a relaxation to a new Jeans equilibrium. The relaxation turns out to be violent relaxation during the first orbital period, followed by phase mixing. By tracing the energy diffusion dE = dU (r), iteratively, the model reproduces the simulated DM profiles with ∼10 per cent accuracy or better. A method based on adiabatic invariants shows similar precision for moderate mass change, but underestimates the DM expansion for strong gas ejection. A method based on a simple empirical relation between DM and total mass ratios makes slightly inferior predictions. The crude assumption used in CuspCore I, of energy conservation for shells that encompass a fixed DM mass, turns out to underestimate the DM response, which can be partially remedied by introducing an alternative ‘energy’ definition. Our model is being generalized to address the differential response of a multicomponent system of stars and DM in the formation of DM-deficient galaxies.

Funder

ISF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The formation of cores in galaxies across cosmic time – the existence of cores is not in tension with the ΛCDM paradigm;Monthly Notices of the Royal Astronomical Society;2024-01-11

2. Massive prompt cusps: a new signature of warm dark matter;Monthly Notices of the Royal Astronomical Society: Letters;2023-03-14

3. Halo heating from fluctuating gas in a model dwarf;Monthly Notices of the Royal Astronomical Society;2023-02-22

4. Is the Core-cusp Problem a Matter of Perspective? Jeans Anisotropic Modeling against Numerical Simulations;The Astrophysical Journal;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3