A Bayesian approach to strong lens finding in the era of wide-area surveys

Author:

Holloway Philip1ORCID,Marshall Philip J23,Verma Aprajita1,More Anupreeta45ORCID,Cañameras Raoul67,Jaelani Anton T89,Ishida Yuichiro10,Wong Kenneth C1112ORCID

Affiliation:

1. Sub-department of Astrophysics, University of Oxford , Denys Wilkinson Building, Keble Road, Oxford OX1 3RH , UK

2. Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University , Stanford, CA 94305 , USA

3. SLAC National Accelerator Laboratory , Menlo Park, CA 94025 , USA

4. The Inter-University Centre for Astronomy and Astrophysics (IUCAA) , Post Bag 4, Ganeshkhind, Pune 411007 , India

5. Kavli Institute for the Physics and Mathematics of the Universe (IPMU) , 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8583 , Japan

6. Max – Planck – Institut für Astrophysik , Karl – Schwarzschild – Str 1, D-85748 Garching , Germany

7. Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James – Franck – Str 1, D-85748 Garching, Germany

8. Astronomy Research Group and Bosscha Observatory, FMIPA, Institut Teknologi Bandung , Jl. Ganesha 10, Bandung 40132 , Indonesia

9. U-CoE AI-VLB, Institut Teknologi Bandung , Jl. Ganesha 10, Bandung 40132 , Indonesia

10. Department of Earth and Planetary Sciences, School of Science, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395 , Japan

11. Research Center for the Early Universe, Graduate School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 , Japan

12. National Astronomical Observatory of Japan , 2-21-1 Osawa, Mitaka, Tokyo 181-8588 , Japan

Abstract

ABSTRACT The arrival of the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST), Euclid-Wide and Roman wide-area sensitive surveys will herald a new era in strong lens science in which the number of strong lenses known is expected to rise from $\mathcal {O}(10^3)$ to $\mathcal {O}(10^5)$. However, current lens-finding methods still require time-consuming follow-up visual inspection by strong lens experts to remove false positives which is only set to increase with these surveys. In this work, we demonstrate a range of methods to produce calibrated probabilities to help determine the veracity of any given lens candidate. To do this we use the classifications from citizen science and multiple neural networks for galaxies selected from the Hyper Suprime-Cam survey. Our methodology is not restricted to particular classifier types and could be applied to any strong lens classifier which produces quantitative scores. Using these calibrated probabilities, we generate an ensemble classifier, combining citizen science, and neural network lens finders. We find such an ensemble can provide improved classification over the individual classifiers. We find a false-positive rate of 10−3 can be achieved with a completeness of 46 per cent, compared to 34 per cent for the best individual classifier. Given the large number of galaxy–galaxy strong lenses anticipated in LSST, such improvement would still produce significant numbers of false positives, in which case using calibrated probabilities will be essential for population analysis of large populations of lenses and to help prioritize candidates for follow-up.

Funder

Science and Technology Facilities Council

SLAC National Accelerator Laboratory

U.S. Department of Energy

Max Planck Society

Deutsche Forschungsgemeinschaft

German Research Foundation

European Research Council

Institut Teknologi Bandung

Japan Society for the Promotion of Science London

Publisher

Oxford University Press (OUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TEGLIE: Transformer encoders as strong gravitational lens finders in KiDS;Astronomy & Astrophysics;2024-08

2. A model for galaxy–galaxy strong lensing statistics in surveys;Monthly Notices of the Royal Astronomical Society;2024-06-28

3. Systematic comparison of neural networks used in discovering strong gravitational lenses;Monthly Notices of the Royal Astronomical Society;2024-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3