The merger of hard binaries in globular clusters as the primary channel for the formation of second-generation stars

Author:

Kravtsov Valery1ORCID,Dib Sami2ORCID,Calderón Francisco A3ORCID

Affiliation:

1. Sternberg Astronomical Institute, Lomonosov Moscow State University , University Avenue 13, Moscow 119899 , Russia

2. Max Planck Institute for Astronomy , Königstuhl 17, D-69117 Heidelberg , Germany

3. Departamento de Física, Universidad Católica del Norte , Av. Angamos 0610, 1270709 Antofagasta , Chile

Abstract

ABSTRACT We have recently presented observational evidence which suggests that the origin of the second-generation (G2) stars in globular clusters (GCs) is due to the binary-mediated collision of primordial (G1) low-mass main-sequence (MS) stars. This mechanism avoids both the mass budget problem and the need of external gas for dilution. Here, we report on another piece of evidence supporting this scenario: (1) the fraction of MS binaries is proportional to the fraction of G1 stars in GCs and, at the same time, (2) the smaller the fraction of G1 stars is, the more deficient binaries of higher mass ratio (q>0.7) are. They are, on average, harder than their smaller mass-ratio counterparts due to higher binding energy at a given primary mass. Then (2) implies that (1) is due to the merging/collisions of hard binaries rather than to their disruption. These new results complemented by the present-day data on binaries lead to the following conclusions: (i) the mass-ratio distribution of binaries, particularly short-period ones, with low-mass primaries, MP < 1.5 M⊙, is strongly peaked close to q=1.0, whereas (ii) dynamical processes at high stellar density tend to destroy softer binaries and make hard (nearly) twin binaries to become even harder and favour their mergers and collisions. G2 stars formed this way gain mass that virtually doubles the primary one, 2MP, at which the number of G1 stars is approximately five times smaller than at MP according to the slope of a Milky Way-like initial mass function at MMS < 1.0 M⊙.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3