Limb darkening measurements from TESS and Kepler light curves of transiting exoplanets

Author:

Maxted Pierre F L1ORCID

Affiliation:

1. Astrophysics group, Keele University , Staffs, ST5 5BG, UK

Abstract

ABSTRACT Inaccurate limb-darkening models can be a significant source of error in the analysis of the light curves for transiting exoplanet and eclipsing binary star systems. To test the accuracy of published limb-darkening models, I have compared limb-darkening profiles predicted by stellar atmosphere models to the limb-darkening profiles measured from high-quality light curves of 43 FGK-type stars in transiting exoplanet systems observed by the Kepler and TESS missions. The comparison is done using the parameters $h^{\prime }_1 = I_{\lambda }({2}/{3})$ and $h^{\prime }_2 = h^{\prime }_1 - I_{\lambda }({1}/{3})$, where Iλ(μ) is the specific intensity emitted in the direction μ, the cosine of the angle between the line of sight and the surface normal vector. These parameters are straightforward to interpret and insensitive to the details of how they are computed. I find that most (but not all) tabulations of limb-darkening data agree well with the observed values of $h^{\prime }_1$ and $h^{\prime }_2$. There is a small but significant offset $\Delta h^{\prime }_1 \approx 0.006$ compared to the observed values that can be ascribed to the effect of a mean vertical magnetic field strength ≈100 G that is expected in the photospheres of these inactive solar-type stars but that is not accounted for by typical stellar model atmospheres. The implications of these results for the precision of planetary radii measured by the PLATO mission are discussed briefly.

Funder

Science and Technology Facilities Council

Space Telescope Science Institute

NASA

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3