Gravity-driven filamentary flow in molecular clouds

Author:

Naranjo-Romero Raúl1ORCID,Vázquez-Semadeni Enrique1ORCID,Loughnane Robert M1

Affiliation:

1. Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, Morelia, Michoacán 58089, México

Abstract

ABSTRACT We present a numerical study of the gravity-driven filamentary flow arising in the presence of elongated perturbations embedded in a globally gravitationally unstable medium. We perform idealized simulations of the gravitational collapse of a moderate filamentary perturbation with a central enhancement (a core) embedded in either a uniform or a stratified background. Both simulations maintain the filamentary structure during the collapse, developing a hierarchical accretion flow from the cloud to the filament, and from the filament to the core. Only the stratified simulation produces a flat central density profile of filaments, best matching the observed Plummer-like profiles, supporting suggestions that molecular clouds may be preferentially flattened. The flow changes direction smoothly from the cloud to the filament, with no density divergence nor a shock developing at the filament’s axis during the prestellar evolution. The drainage of material by the filament-to-core accretion slows down the growth of the filament, causing the ratio of the core’s central density to the filament’s axial density to increase in time, and to diverge at the time when a singularity (protostar) forms in the core. We argue that the system should evolve towards a stationary state in which the filament-to-core accretion balances the cloud-to-filament one, and search for it in the simulations, but find no unambiguous evidence. However, we find that, after a period of accelerated increase, the filament’s linear mass density reaches a linear growth rate. The stationary state may be approached during the protostellar stage.

Funder

UNAM

CONACYT

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3