Affiliation:
1. Faculty of Mathematics, Physics and Informatics, Comenius Unversity, Mlynska dolina, 84248 Bratislava, Slovakia
Abstract
ABSTRACT
In this work, we investigate the possibility of transporting material to the NEO region via the 8:3 MMR with Jupiter, potentially even material released from the dwarf planet Ceres. By applying the FLI map method to the 8:3 MMR region in the orbital plane of Ceres, we were able to distinguish between stable and unstable orbits. Subsequently, based on the FLI maps (for mean anomaly M = 60° and also M = 30°), 500 of the most stable and 500 of the most unstable particles were integrated for $15\, \mathrm{Myr}$ for each map. Long-term integration in the case of M = 60° showed that most of the stable particles evolved, in general, in uneventful ways with only 0.8 per cent of particles reaching the limit of q ≤ 1.3 au . However, in the case of M = 30°, a stable evolution was not confirmed. Over 40 per cent of particles reached orbits with q ≤ 1.3 au and numerous particles were ejected to hyperbolic orbits or orbits with a > 100 au. The results for stable particles indicate that short-term FLI maps are more suitable for finding chaotic orbits, than for detecting the stable ones. A rough estimate shows that it is possible for material released from Ceres to get to the region of 8:3 MMR with Jupiter. A long-term integration of unstable particles in both cases showed that transportation of material via 8:3 MMR close to the Earth is possible.
Funder
VEGA
Slovak Research and Development Agency
Publisher
Oxford University Press (OUP)
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献