Measuring interacting binary mass functions with X-ray fluorescence

Author:

Dashwood Brown C1,Gandhi P1ORCID,Charles P A1

Affiliation:

1. School of Physics and Astronomy, University of Southampton , Southampton SO17 1BJ, UK

Abstract

ABSTRACT The masses of compact objects in X-ray binaries are best constrained through dynamical measurements, relying on radial velocity curves of the companion star. In anticipation of upcoming high X-ray spectral resolution telescopes, we explore their potential to constrain the mass function of the compact object. Fe K line fluorescence is a common feature in the spectra of luminous X-ray binaries, with a Doppler-broadened component from the inner accretion disc extensively studied. If a corresponding narrow line from the X-ray irradiated companion can be isolated, this provides an opportunity to further constrain the binary system properties. Here, we model binary geometry to determine the companion star’s solid angle, and deduce the iron line’s equivalent width. We find that for systems with a mass ratio q > 0.1, the expected Kα equivalent width is 2–40 eV. Simulations using xspec indicate that new microcalorimeters will have sufficient resolution to be able to produce Kα emission-line radial velocity measurements with precision of 5–40 km s−1, for source continuum fluxes exceeding 10−12 erg cm−2 s−1. Several caveats need to be considered; this method is dependent on successful isolation of the narrow line from the broad component, and the observation of clear changes in velocity independent of scatter arising from complex wind and disc behaviour. These issues remain to be proven with microcalorimeters, but this method has the potential to constrain binary parameters where optical measurements are not viable.

Funder

STFC

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Resolution Spectroscopy of X-ray Binaries;High-Resolution X-ray Spectroscopy;2023

2. On the Neutron Star/Black Hole Mass Gap and Black Hole Searches;Research in Astronomy and Astrophysics;2022-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3