Constraining radio mode feedback in galaxy clusters with the cluster radio AGNs properties to z ∼ 1

Author:

Gupta N1234ORCID,Pannella M2,Mohr J J234,Klein M24,Rykoff E S56,Annis J7,Avila S8ORCID,Bianchini F1,Brooks D9,Buckley-Geer E7ORCID,Bulbul E1011,Carnero Rosell A1213ORCID,Carrasco Kind M1415ORCID,Carretero J16,Chiu I17ORCID,Costanzi M2,da Costa L N1318,De Vicente J8ORCID,Desai S19,Dietrich J P23,Doel P9,Everett S20,Evrard A E2122ORCID,García-Bellido J8,Gaztanaga E2324ORCID,Gruen D5625ORCID,Gruendl R A1415,Gschwend J1318,Gutierrez G7,Hollowood D L20,Honscheid K26,James D J10,Jeltema T20,Kuehn K27,Lidman C28ORCID,Lima M1329,Maia M A G1318,Marshall J L30,McDonald M11,Menanteau F1415,Miquel R1631,Ogando R L C1318,Palmese A7ORCID,Paz-Chinchón F1415,Plazas A A32ORCID,Reichardt C L1ORCID,Sanchez E8,Santiago B1333,Saro A343536,Scarpine V7,Schindler R6,Schubnell M22,Serrano S2324,Sevilla-Noarbe I8,Shao X2,Smith M37ORCID,Stott J P38,Strazzullo V2,Suchyta E39ORCID,Swanson M E C15,Vikram V40,Zenteno A41

Affiliation:

1. School of Physics, University of Melbourne, Parkville, VIC 3010, Australia

2. Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr 1, D-81679 Munich, Germany

3. Excellence Cluster Origins, Boltzmannstr 2, D-85748 Garching, Germany

4. Max Planck Institute for Extraterrestrial Physics, Giessenbachstr, D-85748 Garching, Germany

5. Kavli Institute for Particle Astrophysics & Cosmology, Stanford University, P. O. Box 2450, Stanford, CA 94305, USA

6. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

7. Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA

8. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain

9. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK

10. Center for Astrophysics Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA

11. Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

12. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

13. Laboratório Interinstitucional de e-Astronomia – LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil

14. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA

15. National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA

16. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra, Barcelona, Spain

17. Academia Sinica Institute of Astronomy and Astrophysics, 11F of AS/NTU Astronomy-Mathematics Building, No.1, Section 4, Roosevelt Rd, Taipei 10617, Taiwan

18. Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil

19. Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India

20. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA

21. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA

22. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

23. Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain

24. Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain

25. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA

26. Department of Physics, The Ohio State University, Columbus, OH 43210, USA

27. Australian Astronomical Optics, Macquarie University, North Ryde, NSW 2113, Australia

28. The Research School of Astronomy and Astrophysics, Australian National University, ACT 2601, Australia

29. Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil

30. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA

31. Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain

32. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA

33. Instituto de Física, UFRGS, Caixa Postal 15051, Porto Alegre, RS 91501-970, Brazil

34. INAF – Osservatorio Astronomico di Trieste, via Tiepolo 11, I-34143 Trieste, Italy

35. IFPU – Institute for Fundamental Physics of the Universe, Via Beirut 2, I-34014 Trieste, Italy

36. INAF – Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste, Italy

37. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK

38. Department of Physics, Lancaster University, Lancaster LA1 4YB, UK

39. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

40. Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA

41. Cerro Tololo Inter-American Observatory, Casilla 603, La Serena, Chile

Abstract

ABSTRACT We study the properties of the Sydney University Molonglo Sky Survey (SUMSS) 843 MHz radio active galactic nuclei (AGNs) population in galaxy clusters from two large catalogues created using the Dark Energy Survey (DES): ∼11 800 optically selected RM-Y3 and ∼1000 X-ray selected MARD-Y3 clusters. We show that cluster radio loud AGNs are highly concentrated around cluster centres to $z$ ∼ 1. We measure the halo occupation number for cluster radio AGNs above a threshold luminosity, finding that the number of radio AGNs per cluster increases with cluster halo mass as N ∝ M1.2 ± 0.1 (N ∝ M0.68 ± 0.34) for the RM-Y3 (MARD-Y3) sample. Together, these results indicate that radio mode feedback is favoured in more massive galaxy clusters. Using optical counterparts for these sources, we demonstrate weak redshift evolution in the host broad-band colours and the radio luminosity at fixed host galaxy stellar mass. We use the redshift evolution in radio luminosity to break the degeneracy between density and luminosity evolution scenarios in the redshift trend of the radio AGNs luminosity function (LF). The LF exhibits a redshift trend of the form (1 + $z$)γ in density and luminosity, respectively, of γD = 3.0 ± 0.4 and γP = 0.21 ± 0.15 in the RM-Y3 sample, and γD = 2.6 ± 0.7 and γP = 0.31 ± 0.15 in MARD-Y3. We discuss the physical drivers of radio mode feedback in cluster AGNs, and we use the cluster radio galaxy LF to estimate the average radio-mode feedback energy as a function of cluster mass and redshift and compare it to the core (<0.1R500) X-ray radiative losses for clusters at $z$ < 1.

Funder

Max-Planck-Gesellschaft

National Science Foundation

Gordon and Betty Moore Foundation

U.S. Department of Energy

MINECO

European Union

European Research Council

CNPq

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3