Can astronomical observations be used to constrain crucial chemical reactions? The methoxy case. SOLIS XVIII

Author:

Balucani Nadia123ORCID,Ceccarelli Cecilia2ORCID,Vazart Fanny2,Dulieu Francois4,Skouteris Dimitrios5,Rosi Marzio6,Pirani Fernando16,Bianchi Eleonora7,Caselli Paola8,Codella Claudio3ORCID

Affiliation:

1. Dipartimento di Chimica, Biologia e Biotecnologie, Universitá degli Studi di Perugia , Perugia I-06123 , Italy

2. Univ. Grenoble Alpes, CNRS, IPAG , F-38000 Grenoble , France

3. INAF – Osservatorio Astrofisico di Arcetri , largo E. Fermi 5, I-50125 Firenze , Italy

4. LERMA, Université de Cergy-Pontoise , F-95000 Cergy Pontoise Cedex , France

5. Master-Tec , Via Sicilia 41, I-06128 Perugia , Italy

6. Dipartimento di Ingegneria Civile e Ambientale, Universitá degli Studi di Perugia , Perugia I-06125 , Italy

7. Excellence Cluster ORIGINS , Boltzmannstraße 2, D-85748 Garching bei München , Germany

8. Max-Planck-Institut für extraterrestrische Physik , Giessenbachstrasse 1, D-085748 Garching , Germany

Abstract

ABSTRACT To understand the origin of interstellar molecules we rely on astrochemical models, the gas-phase networks of which contain ≥7000 reactions. However, just a tiny fraction of them have parameters derived in laboratory experiments. Theoretical quantum mechanical (QM) calculations can also provide this information. Unfortunately, sometimes theoretical predictions and experimental values disagree, as is the case for the paradigmatic reaction CH3OH + OH → CH3O + H2O. Both laboratory experiments and QM calculations found an unexpected increase in the rate coefficients with decreasing temperature. However, experimental and theoretical estimates of the rate coefficients diverge by up to two orders of magnitude at the low temperatures of interest in interstellar chemistry. This work aims to test whether astronomical observations can help untangle this confusing situation. To this end, we first carried out new QM calculations to derive the rate coefficients of the major destruction reaction of the methoxy radical, CH3O + H, and then we compared astronomical observations from the IRAM/NOEMA Large Programme SOLIS with astrochemical model predictions. Our new rate coefficient for the CH3O + H reaction is 5–10 times larger than that in the astrochemical data base KIDA in the 10–100 K range. When including the new methoxy destruction rate coefficients, the comparison between observations and model predictions favours the rate coefficients of the CH3OH + OH reaction from QM calculations. We conclude that QM calculations are an important alternative to laboratory experiments when it comes to the harsh conditions of interstellar objects and that astronomical observations can be used to constraint the rate coefficients of relevant reactions.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3