Accretion of ice giant planets from massive protoplanets whose migration is blocked by Jupiter and Saturn

Author:

Benedetti-Rossi G12ORCID,Ribeiro R1,Winter O C1,Gaspar H S3,Vieira-Neto E1

Affiliation:

1. Universidade Estadual Paulista Julio de Mesquita Filho, Grupo de Dinâmica Orbital e Planetologia , Av. Dr. Ariberto Pereira da Cunha, 333 - Pedregulho, Guaratinguetá - SP, 12516-410 , Brazil

2. Laboratório Interinstitucional de e-astronomia, LIneA/MCTI & INCT do e-Universo , Rio de Janeiro , Brazil

3. Universidade Federal de Santa Catarina , Estr. Dona Francisca, 8300 - Bloco U - Zona Industrial Norte, Joinville - SC, 89219-600 , Brazil

Abstract

ABSTRACT The growth and dynamical evolution of protoplanets beyond Saturn through collisions and type I migration typically result in a highly chaotic dynamics, producing a diversity of outcomes depending on the initial conditions. Here we present the results of N-bodies numerical simulations aiming to make a detailed exploration of different initial conditions and potential outcomes for this dynamics. We consider Jupiter and Saturn at the imminence of crossing the 3:2 mean motion resonance in two possible positions based on the final and initial conditions of the Grand Tack and the Nice models, respectively; four different gas disc lifetimes, and a range of population sizes of planetary embryos beyond Saturn with different masses and orbital configurations in a total of 72 different setups. We present statistical analyses of our outcomes including planets that ‘jump’ to interior orbits of Jupiter, the frequency of close encounters between the planetary embryos and Jupiter, the number of ejections and collisions, and the dynamical effects for stabilizing the final planetary system in chains of mean motion resonances. Results show that independently of the initial configuration of Jupiter and Saturn and the gas lifetime, the dynamical evolution goes through three main phases. A few per cent of the simulations successfully produce Uranus and Neptune analogues, which may have implications on the ice giants’ composition and obliquities, the material ejected from the Solar System, and the conditions for the giant planet instability.

Funder

CAPES

FAPESP

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3