Efficient selection of gravitationally lensed OH megamasers with MeerKAT and the Square Kilometre Array

Author:

Button Charissa B1ORCID,Deane Roger P12ORCID

Affiliation:

1. Department of Physics, University of Pretoria , Lynwood Road, Hatfield, Pretoria 0028 , South Africa

2. Wits Centre for Astrophysics, University of the Witwatersrand , Jan Smuts Avenue, Johannesburg 2000 , South Africa

Abstract

ABSTRACT There has been a recent resurgence in hydroxyl (OH) megamaser research driven by Square Kilometre Array (SKA) precursor/pathfinder telescopes. This will continue in the lead-up to the SKA mid-frequency array, which will greatly expand our view of OH megamasers and their cosmic evolution over ≳80 per cent of the age of the Universe. This is expected to yield large scientific returns as OH megamasers trace galaxy mergers, extreme star formation, high molecular gas densities, and potentially binary/dual supermassive black hole systems. In this paper, we predict the distortion to the OH luminosity function that a magnification bias will inflict, and in turn, predict the distortion on the OH megamaser number counts as a function of redshift. We identify spectral flux density thresholds that will enable efficient lensed OH megamaser selection in large spectral line surveys with MeerKAT and SKA. The surface density of lensed galaxies that could be discovered in this way is a strong function of the redshift evolution of the OH megamaser luminosity function, with predictions as high as ∼1 lensed OH source per square degree at high redshifts (z ≳ 1) for anticipated SKA spectral line survey designs. This could enable efficient selection of some of the most highly obscured galaxies in the Universe. This high-redshift selection efficiency, in combination with the large survey speed of the SKA at ≲1 GHz frequencies and the high magnifications possible with compact OH emission regions (μOH ≫ 10), will enable a transformational view of OH in the Universe.

Funder

NRF

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3