Coordinated time variability of multi-phase ultra-fast outflows in J132216.25 + 052446.3

Author:

Aromal P1,Srianand R1ORCID,Petitjean P2

Affiliation:

1. IUCAA , Postbag 4, Ganeshkind, Pune 411007, India

2. Institut d’Astrophysique de Paris, Sorbonne Université and CNRS , 98bis boulevard Arago, 75014 Paris, France

Abstract

ABSTRACT We present a time variability analysis of broad absorption lines (BAL; spread over the velocity range of 5800–29 000 km s−1) seen in the spectrum of J132216.25 + 052446.3 (zem = 2.04806) at ten different epochs spanning over 19 yr. The strongest absorption component (BAL-A; spread over 5800–9900 km s−1) is made up of several narrow components having velocity separations close to C iv doublet splitting. The C iv, N v, and Si iv absorption from BAL-A show correlated optical depth variability without major changes in the velocity structure. A very broad and shallow absorption (BAL-C; spread over the velocity range 15 000–29 000 km s−1) emerged during our monitoring period coinciding with a dimming episode of J1322 + 0524. All the identified absorption lines show correlated variability with the equivalent widths increasing with decreasing flux. This together with the C iv emission line variability is consistent with ionization being the main driver of the correlated variability. The observed UV-continuum variations are weaker than what is required by the photoionization models. This together with a scatter in the C iv equivalent width at a given continuum flux can be understood if variations of the C iv ionizing photons are much larger than that of the UV continuum, the variations in the ionizing photon and UV fluxes are not correlated and/or the covering factor of the flow varies continuously. We suggest BAL-A is produced by a stable clumpy outflow located beyond the broad emission line region and BAL-C is a newly formed wind component located near the accretion disc and both respond to changes in the ionizing continuum.

Funder

Alfred P. Sloan Foundation

U.S. Department of Energy

Office of Science

University of Utah

Carnegie Mellon University

Harvard-Smithsonian Center for Astrophysics

Johns Hopkins University

University of Tokyo

Lawrence Berkeley National Laboratory

Leibniz-Institut für Astrophysik Potsdam

National Astronomical Observatories of China

New Mexico State University

New York University

University of Notre Dame

MCTI

Ohio State University

Pennsylvania State University

Universidad Nacional Autónoma de México

University of Arizona

University of Colorado Boulder

Oxford University

University of Portsmouth

University of Virginia

University of Washington

Vanderbilt University

Yale University

SALT

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time variability of ultra-fast BAL outflows using SALT: C iv absorption depth based analysis;Monthly Notices of the Royal Astronomical Society;2023-12-23

2. Time variability of ultra fast BAL outflows using SALT: C iv equivalent width analysis;Monthly Notices of the Royal Astronomical Society;2023-05-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3